GOAL DIRECTED THERAPY IN SEVERE SEPSIS AND SEPTIC SHOCK

Essay

Submitted For Partial Fulfillment of Requirement for Master Degree

In Critical Care Medicine

By

Maged Reda Moussa Moussa M.B.B.Ch (2006)

Ain Shams Faculty of Medicine

Supervised by

Prof. Dr. Hala Gomaa Salama

Professor of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University

Dr. Yasir Ahmed Al-Basiony

Lecturer of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University

Dr. George Michael Khalil

Lecturer of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2011

التقييم الإكلينيكي للعلاج المبكر الهادف للتعفن الشديد والصدمة التعفنية

دراسة مقدمة من الطبيب/ ماجد رضا موسى موسى بكالوريوس الطب والجراحة

توطئة للحصول على درجة الماجستير في طب الحالات الحرجة

تحت إشراف د/ هالة جمعة سلامة أستاذ التخدير والعناية المركزة كلية الطب جامعة عين شمس

د/ ياسر أحمد البسيوني مدرس التخدير والعناية المركزة كلية الطب جامعة عين شمس

د/جورج ميخائيل خليل مدرس التخدير والعناية المركزة كلية الطب جامعة عين شمس

كلية الطب جامعة عين شمس ٢٠١١

Summary

Sepsis is a clinical syndrome that complicates severe infection and is characterized by systemic inflammation and widespread tissue injury. In this syndrome, tissues remote from the original insult display the cardinal signs of inflammation, including vasodilatation, increased micro-vascular permeability, accumulation. Although inflammation is an and leucocyte essential host response, current believes regarding the onset and progression of sepsis center upon a "dysregulation of the normal response", with a massive and uncontrolled release of proinflammatory mediators creating a chain of events that leads to widespread tissue injury and frequently to death, Current pathophysiologic concepts of sepsis include Activation of coagulation, Impairment of anticoagulant mechanisms, so the coagulation system and anti-inflammatory cascade work in concert, with one potentiating the effects of the other.

A number of organ abnormalities may occur in septic shock. The lungs may develop low- pressure pulmonary oedema, or adult respiratory distress syndrome. Dissiminated intravascular coagulation may occur and carries a high mortality. Renal impairment & gastrointestinal dysfunction may occur secondary to regional ischemia; Central nervous system dysfunction is also common, cardiac muscle dysfunction causing myocardial depression, hepatic dysfunction, adrenal insufficiency, vasodilatation, disturbed oxygen consumption, delivery and disturbed peripheral metabolism.

Clinical signs of systemic inflammation such as changes in body temperature, leukocytosis, and tachycardia may therefore have an infectious or non-infectious etiology and are neither specific nor sensitive for sepsis. It is, thus, frequently difficult to distinguish patients with systemic infection from those who appear septic but have no evidence of infection. Bacteriologic evidence of infection also has drawbacks because it may not develop concurrently with clinical signs of sepsis, and a negative bacteriologic result does not exclude the presence of infection or sepsis. Since these common clinical and laboratory parameters lack sensitivity and specificity, others are needed to provide an early marker of the infectious etiology of a generalized inflammatory response and thus allow early diagnosis and the application of more specific therapeutic interventions.

A lot of markers help in diagnosis and prognosis of sepsis which include procalcitonin, polymorphnuclear elastase enzyme, cytokines, eosinophils, acute phase reactant proteins and Blood lactate level.

The basic treatment of sepsis involves control of infection by antibiotics and surgical intervention if required, fluid resuscitation by colloid and crystalloids, blood transfusion when required, vasopressor and inotropic therapy, administration of oxygen and ventilation and others.

Aim of the work

The aim of this work is to evaluate the efficacy of early goal directed therapy in critically ill patient with severe sepsis or septic shock as regards:

Incidence of complication Outcome:

- a. Morbidity
- b. Mortality
- c. Improvement

Contents

Title	Page
List of abbreviations	II
List of figures	VI
List of tables	VII
Introduction	1
Patho-physiology of sepsis and septic shock	٤
Diagnosis and clinical effects	٣٩
Early goal directed therapy in treatment of sepsis and septic shock.	٧٢
English Summary	-
References	1 7 9
Arabic Summary	-

LIST OF ABBREVIATIONS

<	Less than
>	More than
°C	Celsius degree
°F	Fahrenheit degree
ACCCM	American College of Critical Care
	Medicine
ADH	Antidiuretic hormone
ADP	Adenosine Di- Phosphate
AIDS	Acquired Immune Deficiency Syndrome
APC	Activated Protein C
ARDS	Acute Respiratory Distress Syndrome
ATP	Adenosine Tri-Phosphate
BBB	Blood-Brain Barrier
Вр	Blood pressure
Bpm	Beat per minute
Bw	Body weight
CaO2	Arterial oxygen content
CI	Cardiac Index
Cl	Chloride
CNS	Central nervous system
CMV	Cyto megalo virus
CORTICUS	Corticosteroid Therapy of Septic Shock
CO	Carbon Monoxide
CQI	Quality improvement initiative
CRRT	Continuos renal replacement therapy
CRT	Capillary refill time
CVC	Central Venous Cannulation
DAD	Diffuse Alveolar Damage
CVP	Central Venous Pressure
DIC	Disseminated Intravascular Coagulopathy
DO_2	Oxygen delivery
EBV	Epstein Barr virus

ECA	Enterobacteriaceae common antigen
ECF	Extracellular fluid
ECLS	Extracorporeal life support
ECMO	ExtraCorporeal Membrane Oxygenation
ED	Emergency department
ESBL	Extended-spectrum beta-lactamase
EGDT	Early goal-directed therapy
ETT	Endotracheal tube
Fe ²⁺	Ferrous
FiO ₂	Fraction of oxygen in inspired gas
GCS	Galascow coma scale
G-CSF	Granulocyte colony-stimulating factor
CSF	Colony-stimulating factor
GM-CSF	Granulocyte-macrophage colony
GM-CSF	stimulating factor
HA-1A	Human monoclonal anti endotoxin
IIA-IA	
GFR	antibody Glomerular filtration rate
H ₂ O HAART	Water Highly active antinetnessical thereasy
	Highly active antiretroviral therapy
HFV	High Frequency Ventiltion
HFIV	High Frequency Interrupted Ventiltion
HFJV	High Frequency Jet Ventiltion
HFOV	High Frequency Oscillatory Ventiltion
ICAMs	Intercellular adhesion molecules
ICG	Indo cyanine green
ICF	Intracellular fluid
ICU	Intensive care unit
IL	Interleukin
IMV	Intermittent mandatory ventilation
IOC	Intraosseous cannulation
IPP	Inspiratory plateau pressure
IV	Intravenous
IVIG	Polyclonal IV immunoglobulin
K	Potassium
kg	Kilogram

LBM	Lean body mass
LES	Lower esophageal sphincter
MAP	Mean arterial pressure
MRSA	Methicillin-Resistant S aureus
mcg	Microgram
mEq/dL	Mill equivalent per deciliter
mg	Milligram
MHC	Major histo-compatibility complex
ml	Milliliter
mm Hg	Millimeter mercurey
mmol	Milli mol
MODS	Multiorgan dysfunction syndrom
MOF	Multi organ failure
MyD88	Myeloid differentiation factor 88
Na	Sodium
NAD^+	Nicotinamide adenine dinucleotide
NaHCO ₃	Sodium bicarbonate
NF-κB	Nuclear factor-κB
NO	Nitric Oxide
NPO	Nothing by mouth
O_2	Oxygen
O ₂ sat	Oxygen saturation
OPS	Orthogonal polarization spectroscopy
ONOO-	Peroxynitrite radicals
Pa O ₂	Arterial oxygen tension
PAI-1	Plasminogen activator inhibitor-1
PALS	Pediatric Advanced Life Support
PARS	Poly ADP ribose synthetase
P (CV-a) CO2	Central venous-to-arterial carbon dioxide
	difference
PEEP	Positive end expirat/ry pressure
PICU	Pediatric intensive care unit
PIP	Peak inspiratory pressure
PMNs	Polymorpho.uclear neutrophils
PSV	Pressure support ventilation

IV

PVR	Pulmonary vascular resistance
RBCs	Red blood cells
rh APC	Recombinant activated protein C
REE	Resting energy expenditure
SAg	Super-antigens
SaO ₂	Arterial oxygen saturation
ScvO ₂	Central venous oxygen saturation
SD	Standard deviation
SICU	surgical intensive care unit
SIRS	Systemic inflammatory response
	syndrome
SOFA	Sequential Organ failure Assessment
SV	Stroke volume
SvO ₂	Mixed venous oxygen saturation
SVR	Systemic vascular resistance
t _{1/2}	Elimination half-life
T3	Tri-iodothyronin
TEE	Transesophageal echocardiography
TF	Tissue factor
TGF	Tissue growth factor
Ti	Inspiratory Time
TIRAP	Toll—IL-1-resistance adaptor-like proteins
TLR	Toll Like Receptors
TNF	Tumor necrosis factor
UGT	Glucuronosyl transferase
VASST	Vasopressin and Septic Shock Trial
V·CO ₂	Carbon dioxide production
$V^{\cdot}O_2$	Oxygen consumption
VCAMs	Vascular adhesion molecules
Vd	Volume of distribution
vWF	Von Willebrand's factor
Wk	Week

LIST OF TABLES

Table No	Title	Page
1	Biologic effects of pro-inflammatory cytokines such as TNF and IL -I	10
2	Plasma endotoxin levels in subgroups of 93 patients with sepsis syndrome	12
3	MODS scoring system	٣٧
4	SOFA scoring system	38
5	Lung injury score	٤٦
6	Criteria for mild and severe organ dysfunction have been established	00

LIST OF FIGURES

Figure No	Title	Page
1	Determinants of outcome in sepsis	٦
2	Potential outcomes of mediator release in sepsis	8
3	Clinical sequelae of the pro-inflammatory and anti- inflammatory responses to sepsis	١٨
4	Decreased oxygen extraction in sepsis	74
5	Acute respiratory distress syndrome (ARDS)	۲٦
6	photomicrograph shows a delayed stage (proliferative or organizing stage)	۲٦
7	Chest-X ray showing acute respiratory distress syndrome (ARDS)	۲٧
8	Schematic representation of the time course of the acute respiratory distress syndrome (ARDS)	۲۸
9	Relationship between inflammatory and coagulation systems in sepsis	77
10	Identification of multiple organ failure in severe sepsis	35
11	Chest-X ray showing 45-year-old woman is admitted to the intensive care unit with septic shock	44
12	Procalcitonin (ProCT)	٦٣
13	TREM-1 pathway in monocytes/macrophages	70
14	Early goal directed therapy (EGDT) in septic shock algorithm.	YY
15	Proposed tools for a refined early goal directed therapy (EGDT) algorithm	۸.
16	Proposed protocol for vasopressor withdrawal or weaning trial	9 £

Introduction

In 1914, Schottmueller define: "Septicemia is a state of microbial invasion from a portal of entry into the blood stream which causes sign of illness" the definition did not change much over the years because the terms sepsis and septicemia referred to several ill-defined clinical conditions present in a patient with bacteremia. (Sharma and Mink, 2007)

In practice, the terms often were used interchangeably; however, less than one half of the patients with signs and symptoms of sepsis have positive results on blood culture. Furthermore, not all patients with bacteremia have signs of sepsis; therefore, sepsis and septicemia are not identical. (Rangel-Frausto et al., 1995)

In the last few decades, discovery of endogenous mediators of the host response have led to the recognition that the clinical syndrome of sepsis is the result of excessive activation of host defense mechanisms rather than the direct effect of micro-organisms. Sepsis and its sequelae represent a continuum of Clinical and Pathophysiologic severity. (Shapiro NI et al., 2009)

Sever sepsis is one of the most significant challenges in critical care. Each year, more than 750,000 people in the U.S. will develop severe sepsis, and more than 215,000 will die from this condition. (Angus DC et al., 2001)

Severe sepsis affects people of all age, whether they are healthy or chronically ill. But certain patients are predisposed to developing severe sepsis. Screening those at-risk patients is highly recommended to diagnose and treat the condition early. (Hotchkiss RS et al., 2007)

١

Early and accurate diagnosis of sepsis is essential to provide adequate early therapy. An ideal marker of sepsis should be able to differentiate a patient with sepsis from one without sepsis, many such markers has been proposed, and as our understanding of sepsis improves, new mediators and potential markers will be identified. (*Póvoa P. et al.*, 1998)

With continuing advances in proteomic, genomic, and microarray techniques we will be able to obtain an infectious or septic profile on each patient almost instantaneously from one small blood sample. (*Jean-Louis Vincent and Marc Van Nuffelen*, 2007)

In a landmark study by Rivers et al, patients admitted to an emergency department with severe sepsis and septic shock were randomized to standard therapy (fluid loading targeted to central venous pressure [CVP] of 8–12 mmHg, mean arterial pressure [MAP] 65 mmHg, and urine output 0.5 ml/kg/h), or to early goal directed therapy in which, in addition to the previous parameters, a central venous oxygen saturation (ScvO²) 70 % was targeted through algorithmic management (*Rivers E. et al., 2011*)

Pathophysiology of Sepsis

The normal host response to infection is a complex process that serves to localize and control bacterial invasion and to initiate repair of injured tissue. This inflammatory process is normally accompanied by activation of circulating and fixed phagocytic cells and by generation of pro-inflammatory and anti-inflammatory mediators. Sepsis results when the inflammatory response to infection becomes generalized, and extends to involve normal tissue remote from the initial site of injury or infection. The current understanding of the pathophysiology of sepsis including mechanisms of multiple organ system dysfunctions. (*Pinsky MR et al.*, 1989)

Sepsis has been referred to as a process of malignant intravascular inflammation.

- It is considered malignant because it is uncontrolled, unregulated, and self-sustaining.
- It is considered intravascular because it represents the blood-borne spread of what is usually a cell-to-cell interaction in the interstitial space.
- It is considered inflammatory because all characteristics of the septic response are exaggerations of the normal inflammatory response.

When tissue is injured or infected, there is simultaneous release of pro inflammatory and anti-inflammatory elements. The balance of these contrasting signals helps to facilitate tissue repair and healing. However, remote tissue injury may ensue when this equilibrium in the inflammatory process is lost, and these mediators exert systemic effects. (Bone RC et al., 1991)