Ain Shams University Faculty of Computer & Information Sciences Information Systems Department

Integrated Security-as-a-Service Model for Cloud Data Storage

A Thesis submitted to Information Systems Department, Faculty of Computer and Information Sciences, Ain Shams University, in partial fulfillment of the requirements for the degree of PhD in Computer and Information Sciences

By

Alshaimaa Abo-alian Ahmed

Masters Degree in Computer and Information Sciences, Assistant Lecturer at Information Systems Department, Faculty of Computer and Information Sciences, Ain Shams University.

Under Supervision of

Prof. Dr. Mohammed Fahmy Tolba

Professor, Scientific Computing Department, Faculty of Computer and Information Sciences, Ain Shams University.

Prof. Dr. Nagwa Lotfy Badr

Professor, Information Systems Department, Faculty of Computer and Information Sciences, Ain Shams University.

Acknowledgement

First and foremost, I am grateful to Almighty Allah for His immense blessings and graciously helping me to complete this thesis.

This thesis owes its existence to the help, support, and inspiration of many people. In the first place, I owe my deepest gratitude to my main supervisor Prof. Dr. Mohamed Fahmy Tolba whose sharp sense of research direction have provided invaluable feedback to improve the quality of this thesis. This thesis would not have been possible without his sound advice and encouragement. I would like to express my sincere appreciation and gratitude to my associate supervisor, Prof. Dr. Nagwa Lotfy Badr for her tremendous amount of support, insightful comments, and invaluable assistance.

Last, but definitely not least, I would like to thank all my friends and family members for their endless love and support. My love and heartfelt thank to my parents for their lifelong support in all my endeavors. My deepest gratitude goes to my husband who shared with me all the ups and downs and he is a great source of inspiration all along. My sincere thanks and love are extended to my two precious daughters for making every moment in my life meaningful.

Abstract

Cloud computing is an emerging paradigm that delivers a large pool of virtual, on-demand and dynamically scalable resources to users via Internet technologies, following the notion of pay-as-you-go. Examples of these resources include computational power, storage capabilities, hardware platforms and applications. The key advantages of cloud computing are immense flexibility and monetary savings through minimization of infrastructure and software investments as well as management and maintenance costs. Besides popular cloud infrastructure and platform providers, such as Amazon, Google, and Microsoft, there are many cloud storage providers which offer more accessible and user friendly data storage services to cloud customers. Examples of these services include Dropbox, SkyDrive, Box.net, Zoho, Ubuntu One or Apple iCloud.

Along with the widespread interest on cloud computing, however, there are still concerns that hinder the proliferation and the adoption of cloud services. One of the main concerns is data security in cloud storage environments. Numerous research problems belonging to the cloud storage security have been studied intensively before. However, addressing the three dimensions of outsourced data security (i.e., confidentiality, integrity and availability) as a cloud service is still a challenge in cloud storage. As there is always a tradeoff between maintaining security and obtaining efficiency, it is difficult but nevertheless essential to explore how to efficiently address security challenges over dynamic cloud data.

The thesis first addresses the security requirements for cloud storage as identified from the literature, given the difficulty that data are no longer locally possessed by data owners. Then it aims to design an integrated **Security-as-a-Service** model for data storage in the cloud that provides authentication, access control, auditing and data management services. We propose a new keystroke authentication system for verifying the identity of cloud users. The proposed keystroke authentication system removes redundant or irrelevant features from the large scale keystroke dynamics by combining different feature selection methods and different fusion rules which, in turn, achieve higher authentication accuracy and performance. Moreover, it eliminates the tradeoff between the authentication accuracy and the elapsed time of the verification process by clustering the user profile templates in the keystroke dataset.

Then, a dynamic access control system is proposed to ensure data confidentiality in cloud computing. The proposed access control system supports automatic user role assignments so that it relieves the data owner from the online and computational burdens of user role assignment processes, especially for large scale systems with a huge number of users and continuously changing user role policies. Additionally, the proposed access control system tackles the key escrow and key management problems in a decentralized cloud environment by defining roles in a hierarchy and supporting key delegation.

Finally, a public auditing system is proposed to delegate the integrity verification of outsourced data in the cloud storage to a third party auditor. The proposed auditing system is privacy preserving so that keeps the data confidential/invisible to the auditor during the auditing process. Moreover, a

data management system is proposed to support data dynamics for replicated and single-copy data files with variable sized blocks on the cloud storage. So, the proposed system supports updates with a size that is not restricted by the size of file blocks. It thereby offers extra flexibility and scalability compared to existing systems. To address the efficiency problem in verifying variable-size updates for cloud storage with multiple replicas, the proposed system incorporates a new authenticated data structure, namely Modified Rank based Authenticated Skip List (MRASL). The proposed MRASL supports verification of all dynamic data replicas at once. It thereby reduces the computation and communication costs. Moreover, the proposed auditing system supports efficient data recovery to repair the corrupted data in the case of single copy data files. Additionally, the proposed auditing system supports batch auditing where multiple auditing tasks with different data files can be performed simultaneously. Extensive experiments and performance analysis demonstrate the effectiveness and efficiency of the proposed model.

TABLE OF CONTENTS

Acknowledgment	i
Abstract	ii
Table of Contents	V
List of Figures	X
List of Tables	xiv
List of Abbreviations	xvi
List of Publications	XX
Chapter 1: Introduction	
1.1 Overview	1
1.2 Problem Definition	4
1.3 Contributions	6
1.4 Thesis Organization	7
Chapter 2: Background and Preliminaries	
2.1 Overview	9
2.2 Cloud Background	10
2.2.1 Cloud Basics	10
2.2.2 Cloud Storage Services	15
2.2.3 Security Issues of Cloud Storage	17
2.3 Cryptographic Background	19

2.3.1 Bilinear Maps	19
2.3.2 Hash Functions	20
2.3.3 Erasure Correction Codes	21
2.3.4 Probabilistic Encryption	22
2.3.5 Homomorphic Verifiable Tags	23
2.4 Authenticated Data Structures	24
2.4.1 Merkle Hash Tree	24
2.4.2 Balanced Update Tree	25
2.4.3 Skip List	26
2.4.4 Index Table	28
Chapter 3: Literature Review	
3.1 Overview	30
3.2 Authentication Systems	30
3.2.1 Keystroke Dynamics based Authentication	
Systems	32
a. Fixed text keystroke authentication systems	33
b. Free text keystroke authentication systems	35
3.3 Access Control Systems	37
3.3.1 Traditional Encryption	38
3.3.2 Broadcast Encryption	39
3.3.3 Identity-Based Encryption	40
3.3.4 Hierarchical Identity-Based Encryption	42
3.3.5 Attribute-Based Encryption	43
a. Key policy attribute-based encryption	44
b. Ciphertext policy attribute-based encryption	47
3.3.6 Hierarchical Attribute-Based Encryption	48
3.3.7 Role-based Access Control	51

3.4 Data Auditing Schemes	52
3.4.1 Auditing Schemes for Single-Copy Data	54
3.4.2 Auditing Schemes for Multiple-Copy Data	56
3.4.3 Auditing Schemes for Static Data	57
3.4.4 Auditing Schemes for Dynamic Data	58
Chapter 4: The Proposed Security-as-a-Service Model for Cloud Environment	
4.1 Overview	61
4.2 The Proposed System Architecture	62
4.3 The Proposed Keystroke based Authentication Subsystem 4.3.1 Data Acquisition	64 66
4.3.2 Keystroke Feature Extraction	67
4.3.3 Clustering	68
4.3.4 Classification	68
4.4 The Proposed Access Control Subsystem	68
4.5 The Proposed Auditing and Data Management Subsystems	74
4.6 Summary	81
Chapter 5: The Proposed System Implementation	
5.1 The Detailed Construction of the Proposed Keystroke	
based Authentication Subsystem	83
5.1.1 Keystroke Feature Extraction	83
a. Outlier detection	84
b. Feature selection and reduction	84
5.1.2 Clustering	88
5.1.3 Classification	90
a. Support vector machines based classification	90

b. Naive Bayesian based classification	
c. Multilayer perceptron based classification	
5.2 The Detailed Construction of the Proposed Access Control Subsystem	
5.2.1 The First Access Control Subsystem Construction5.2.2 The Second Access Control Subsystem	n
Construction	
Control Subsystem	
Management Subsystems	
5.3.2 The Auditing Subsystem Construction	
5.3.3 Supporting Batch Auditing	
5.3.4 Performance Analysis of the Proposed Auditing and Data Management Subsystem	1
5.4 Security Analysis	
hapter 6: Experimental Results and Discussions	
	1
hapter 6: Experimental Results and Discussions 6.1 Overview	
6.1 Overview	m ₁
6.1 Overview	m ₁
6.1 Overview	m ₁ 1
6.1 Overview	m ₁ ·· 1 1
6.1 Overview	m ₁ 1 1 1 ls. 1
6.1 Overview	m 1 1 1 ls. 1 1
6.2 Experiments on the Keystroke Authentication Subsyste 6.2.1 Datasets Description	m 1 1 1 ls. 1 1
 6.1 Overview 6.2 Experiments on the Keystroke Authentication Subsyste 6.2.1 Datasets Description 6.2.2 Evaluation Criteria 6.2.3 Results and Discussion a. The impact of feature selection and fusion method b. The impact of number of clusters c. The impact of classification methods, user sample size and password length d. Comparison between the keystroke authentication 	m 1 1 1 ls. 1 1 on 1
6.1 Overview	m 1 1 1 ds. 1 1 on 1

a. The effect of the role depth and the number of	.38
1	
b. The effect of number of user attributes 1	40
c. The effect of the file size 1	40
6.3.2 Experiments on the Second Construction 1	41
6.4 Experiments on the Auditing and Data Management	
Subsystems	43
6.4.1 The Impact of Corruption Rate and Challenge Size. 1	44
6.4.2 The Impact of File Size and Block Size 1	45
6.4.3 The Impact of Number of Replicas	46
6.4.4 The Impact of Number of Users	49
6.4.5 The Advantages of Batch Auditing	50
6.4.6 Comparison between the Auditing Subsystem and the State-of -the-art	52
Chapter 7: Conclusions and Future Work	
7.1 Conclusions	56
7.2 Future Work	58
References 1	60

LIST OF FIGURES

2.1	Cloud computing essentials	11
2.2	The top cloud benefits	14
2.3	The top challenges within cloud environment	15
2.4	Merkle Hash Tree	25
2.5	Example of balanced update tree operations	26
2.6	Rank-based authenticated skip list	27
2.7	An example of index table during different file operations.	28
3.1	Symmetric key encryption versus public key encryption	39
3.2	Example of an identity-based encryption	41
3.3	Hierarchical identity-based encryption	43
3.4	Key policy attribute-based encryption in a healthcare	
	system	45
3.5	Hierarchical attribute-based encryption model	49
3.6	Structure of an auditing scheme	54
4.1	The proposed security-as-a-service model	63
4.2	The proposed keystroke based authentication subsystem	66
4.3	The proposed access control subsystem	70
4.4	An example of role hierarchy	71
4.5	Example of an access policy tree	72
4.6	The proposed auditing scheme	77
4.7	The modified rank-based authenticated skip list (MRASL)	79

5.1	The clustering process in the offline mode	89
5.2	The proposed "Create Role" process of the first	
	construction	94
5.3	The proposed "Create Role" process of the second	
	construction	99
5.4	The key generation process	105
5.5	The tag generation process	108
5.6	An Insertion after the 1st block into the MRASL in Fig.	
	4.7	109
5.7	A Deletion of the 2nd block for the MRASL in Fig. 4.7	110
5.8	The Key Modification process	110
6.1	Some data samples from the CMU keystroke dynamics	
	benchmark dataset	123
6.2	The impact of different cluster sizes	130
6.3	The impact of different classifiers and sample size on	
	equal error rate (EER) using CMU and AndroidKeystroke	
	datasets	131
6.4	The impact of different classifiers and sample size on the	
	elapsed time using CMU and AndroidKeystroke datasets .	132
6.5	The impact of different classifiers and password length on	
	EER using three datasets	133
6.6	The impact of different classifiers and password length on	
	elapsed time using three datasets	134

6.7	The effect of the role depth and number of users per role	
	on decryption, encryption and user revocation times	139
6.8	The effect of the number of user attributes	140
6.9	The effect of file size	141
6.10	The effect of role depth and number of users/role on the	
	decryption time (in the second construction)	141
6.11	The effect of role depth and number of users/role on the	
	ciphertext (in the second construction)	142
6.12	The user secret key size of the proposed system in	
	comparison with the TimePRE scheme	143
6.13	The effect of different corruption rates and detection	
	probabilities on the computational time of the proposed	
	auditing subsystem	144
6.14	The effect of different file sizes and block sizes on the	
	computational time of the proposed auditing subsystem	145
6.15	The effect of the size of the blocks modified on the	
	verification time	146
6.16	The effect of different number of replicas and file sizes on	
	the computational time of the proposed auditing subsystem	147
6.17	The effect of the number of replicas on the communication	
	costs of dynamic operations	148
6.18	The effect of the number of replicas on the storage	
	overheads	149
6.19	The effect of the number of users on the proposed scheme	
	scalability	149

6.20	The effect of the number of auditing tasks on the	
	verification time	150
6.21	The effect of the number of auditing tasks on the	
	communication costs	151
6.22	The effect of the number of auditing tasks on the	
	verification time and the detection probability	152
6.23	The computational time of the proposed auditing scheme	
	(multiple-replica version) and [48] using different	
	numbers of replicas	153
6.24	The computational time of the proposed auditing scheme	
	(single-copy version) and [160] using different numbers	
	of challenged blocks	154

LIST OF TABLES

2.1	Cloud SPI services delivery vendors	12
2.2	Commercial cloud storage providers	16
2.3	Comparison of different cryptographic hash functions	20
2.4	Comparison between different probabilistic encryption	
	schemes	23
4.1	Example of keystroke features	67
5.1	Feature fusion rules	88
5.2	Performance analysis of the proposed access control	
	subsystem and the state-of-the-art	102
5.3	The advantages of batch auditing	114
5.4	Performance analysis of the proposed auditing subsystem	
	and the related work	116
6.1	Keystroke features in the AndroidKeystroke dataset	124
6.2	Summary of the keystroke datasets used	125
6.3	A Simple confusion matrix	126
6.4	The impact of feature selection and fusion methods using	
	the CMU dataset	127
6.5	The impact of feature selection and fusion methods using	
	the GP dataset	128