

Biochemical, nutritional and histological study of feeding with two varieties of mushrooms on experimentally induced anemia and hypercholesterolemia in albino rats

By

Hend Mohamed Ali Mohamed

M. Sc. Home Economic, Nutrition and Food Science Faculty of Specific Education Assiut University

THESIS

Submitted for Fulfillment of The Philosophy Doctor Degree in Home Economics

Nutrition and Food Science

Supervised by

Prof. Dr. Mohamed K. El-sayed Youssef

Prof. of Food Science & Technology Faculty of Agriculture, Assiut University Member of American Academy of Science

Assistant Prof. Dr. Heba M. S. El Dien

Assistant Prof. of Histology
Faculty of Medicine - Assiut University

Prof. Dr. Farouk M. El-Tellawy Prof. of Food Science & Technology Head department, of Agriculture science,

Institute of Environmental Researches Ain Shams University

Dr. Amany O. Mohamed Lecturer of medical Biochemistry

Faculty of Medicine - Assiut University

ARSTRACT

Biochemical, Nutritional and Histological Study of Feeding With Two Genera of Mushrooms on Experimentally Induced Anemia and Hypercholesterolemia in Albino Rats

By

Hend Mohamed Ali Mohamed

M. Sc. Home Economic, Nutrition and Food Science
Faculty of Specific Education
Assiut University

Thesis

Submitted for Fulfillment of The Philosophy Doctor Degree in Home Economics

Nutrition and Food Science

In the last decades, there is an increase in numbers of patients of anemia, heart stroke like angina pectoris, arteriosclerosis and cancer.

Hence, we are looking for a new sources of food that will contribute to filling the food gap by examining the impact of nutrition on two mushroom genera common their agriculture in Egypt, which play an important role in decreasing the rates of cholesterol and lack of anemia and Egypt started the cultivation of mushroom in the eighties and increased interest in Egypt took place due to its many benefits, so the ministry of agriculture is currently interested in spreading mushroom. Mushrooms are rich and good sources of protein, amino acid, vitamins like vitamin B and D, potassium and iron. So the present investigation was carried out in an attempt to clarify the effect of the two studied mushroom genera namely: (Agaricus bisporus) and (Pleurotus ostreatus) on blood serum glucose, triglycerides, total cholesterol, HDL cholesterol, LDL cholesterol and VLDL of the experimental cholesterol (induced hypercholesterolemia) and the effect of the two studied mushroom genera in experimental rats (induced anemia) after feeding with two studied mushrooms genera as well as in the control diets.

The results revealed that there were significant differences among all six studied groups at the experimental rats in body weight gain and there were significant differences between untreated group and all the four studied groups at (P<0.05) in serum total cholesterol, HDL-cholesterol, LDL-cholesterol, VLDL-cholesterol, blood serum glucose and triglycerides.

On the other hand, there were significant differences among the six studied groups at (P<0.05). Likewise, there were an increase in complete blood picture in Hb, RBCs, MCV, MCH, MCHC and decrease in HCT and there were significant differences in the activity of AST and ALT enzymes in the blood serum of the experimental rats after treating with the two studied mushroom genera (*Agaricus bisporus*) and (*Pleurotus ostreatus*).

In addition, the present investigation revealed that feeding the experimental animals with the two studied mushroom genera recorded histopathological changes in liver, kidney and spleen.

Experiment were carried out to clarify the effect of nutrition with the two studied mushroom genera on curing the infected albino rats with carcinogenic substance (1,2 dimethylhydrazine dose 20 mg/kg body weight).

The data obtain in the present investigation proved that the mushroom genera (*Pleurotus ostreatus*) was very effective in reducing the carcinogensity of albino rats. However, the nutrition with (*Agaricus bisporus*) genera revealed insignificant effect in this concept.

Key words:

Mushroom, *Agaricus bisporus*, *Pleurotus ostreatus*, chemical composition, mineral content, amino acids composition, fatty acids composition, vitamins, serum glucose, triglycerides, cholesterol, anemia, cancer, histopathology, liver, kidney, spleen and lung.

ACKNOWLEDGEMENTS

Firstly all praises are due to **ALLAH**, he showed me the way and gave me the support to produce this work. I would like to express my deep gratitude and sincere thanks to **Prof. Dr. Mohamed K. El-Sayed Youssef** Professor of Food Science and Technology, Faculty of Agriculture, Assiut University, Member of American Academy of Sciences, for kindly suggesting the problem and providing so much of his time in supervising, guiding the work and revising the manuscript. His kind supervision valuable comments, continuous encouragement during carrying out the investigation as well as during writing the thesis are highly appreciated.

I wish to express my profound appreciation and gratitude to Prof. **Dr. Farouk. M. El-Tellawy** Professor of Food Science and Technology, Head department of Agriculture science Institute of Environmental Researches, Ain Shams University for his supervision, trustful help, unfailing advice and giving me the power to complete this work.

My great thanks are offered to **Dr. Heba M. S. El Dien**, Assistant Prof. of Histology, Faculty of Medicine, Assiut University, for her supervision, trustful help, unfailing advice, kind criticism and her keen interest throughout thesis work.

Many thanks are also extended to **Dr. Amany O. Mohamed,** Lecturer of medical Biochemistry, faculty of medicine, Assiut university, for his guidance in conducting the chemical analysis which needed in this work.

CONTENTS

	Page
List of tables	V
List of figures	viii
List of micrographs	ix
List of abbreviations	xiii
1. Introduction	1
Aim of study	4
2. Review of literature	
2.1. Historical background of mushrooms	5
2.2. The nutritive value of mushrooms	8
2.3. Gross chemical composition of mushrooms	9
2.4. Minerals composition of mushrooms	14
2.5. Vitamins in mushrooms	16
2.6. Amino acids of mushrooms	21
2.7. Fatty acids of mushrooms	23
2.8. Effect of mushroom on cholesterol fractions and	
blood glucose level of the experimental rats	26
2.9. Effect of mushrooms on iron deficiency anemia	32
2.10. Other medical benefits of mushroom	37
2.11. The role of mushroom as anticarcinogenic factor	•
in human nutrition	38
2.12. Effect of mushrooms on histological characteris-	40
tic of some organs of the experimental rats	43
3. Materials and methods	4.4
3.1. Materials	44
3.1.1. Source of samples	44 44
3.1.2. Preparation of samples 3.2. Methods	44 44
3.2.1. Chemical methods	44
3.2.1. Determination of moisture, crude	44
protein, crude fat, crude fiber and ash	
contents.	44
3.2.1.2. Total carbohydrates	44
3.2.1.3. Caloric value	44
3.2.1.4. Determination of mineral contents	45

	Page	
3.2.1.5. Determination of amino acids content		
of the two studied mushroom genera	45	
3.2.1.6. Determination of fatty acids methyl		
esters by gas liquid chromatography.	45	
3.2.1.7. Determination of vitamin B-complex	46	
3.2.1.8. Determination of vitamin A	46	
3.2.1.9. Computation of chemical score	47	
3.2.1.10. Computation of A/E ratio	47	
3.2.1.11. Computation of protein efficiency		
ratio (PER)	47	
3.2.1.12 Computation of biological value (BV)	47	
3.3. Biological experiment	48	
3.3.1. Experimental animals	48	
3.3.2. Basal diet and untreated hyperlipidemic diet	48	
3.3.3. Chemicals	49	
3.3.4. Experimental design	50	
3.3.5. Blood sampling	51	
3.4. Biochemical methods	51	
3.4.1. Determination of serum glucose	51	
3.4.2. Determination of serum triglycerides	51	
3.4.3. Determination of serum total cholesterol	52	
3.4.4. Determination of High Density Lipoprotein		
(HDL) cholesterol	53	
3.4.5. Determination of Low Density Lipoprotein		
(LDL) cholesterol calculation	53	
3.4.6. Complete blood picture	53	
3.4.7. Determination of plasma amino- transferases		
activity (ALT/GPT) and (AST/GOT)	54	
3.4.8. Determination of Carcinoembryonic Antigen		
(CEA)	54	
3.5. Histopathological technique	54	
3.6. Statistical analysis	55	
4. Results and discussion		
4.1. Gross chemical composition of the two studied		
mushroom genera (Agaricus bisporus) and		
(Pleurotus ostreatus)	56	
4.1.1. Moisture	59	

	Page
4.1.2. Protein	59
4.1.3. Crude fat	59
4.1.4. Crude fiber	60
4.1.5. Ash content	61
4.1.6. Total carbohydrates	61
4.2. Minerals content	62
4.3. Amino acid composition of the two studied	
mushroom genera	63
4.4. A/E ratio	65
4.5. Biological value of protein in the two studied	
mushroom genera (Agaricus bisporus) and	
(Pleurotus ostreatus)	66
4.6. Chemical score and limiting amino acids	67
4.7. Fatty acid composition of total lipids of the two	
studied mushroom genera	68
4.8. Vitamins in mushrooms	70
4.9. Body weight gain in experimental rats (induced	
hypercholesterolemia)	71
4.10. Blood serum glucose (mg/dl) in the two studied	
mushroom genera (induced hypercholesterolemia)	73
4.11. Blood serum triglycerides (mg/dl) in the two	
studied mushroom genera (induced hyperchol-	
esterolemia)	76
4.12. Blood serum total cholesterol (mg/dl) in the two	
studied mushroom genera (induced hyperchol-	
esterolemia)	78
4.13. Blood serum HDL (High Density Lipoprotein)	
(mg/dl) in the two studied mushroom genera	
(induced hypercholesterolemia)	83
4.14. Blood serum LDL (Low Density Lipoprotein)	
(mg/dl) in the two studied mushroom genera	
(induced hypercholesterolemia)	86
4.15. Blood serum VLDL (Very Low Density	
Lipoprotein) (mg/dl) in the two studied mushroom	_
genera (induced hypercholesterolemia)	89
4.16. Relative weight of three studied organs	92
4.16.1. Relative weight of liver	93

	Page
4.16.2. Relative weight of kidney	94
4.16.3. Relative weight of spleen	94
4.17. Histological changes after induction of hyper-	
cholesterolemia	95
4.17.1. Liver	95
4.18. Body weight gain in experimental rats (induced	
anemia)	98
4.19. Complete blood picture in the two studied	
mushroom genera (induced anemia)	100
4.20. Effect of the two studied mushroom genera	
(induced anemia) on liver function parameters	108
4.21. Relative weight of the three studied organs	110
4.21.1. Relative weight of liver	111
4.21.2. Relative weight of kidney	111
4.21.3. Relative weight of spleen	112
4.22. Histological changes after induction of anemia	113
4.22.1. Liver	113
4.22.2. Spleen	113
4.23. Histological changes after induction of carcino-	
genicity	118
4.23.1. Liver	118
4.23.2. Spleen	119
4.23.3. Lung	119
5. Summary and conclusions	155
References	164
Arabic summary	1

LIST OF TABLES

No.	Title	Page
1.	Constituents of the basal diet for 100gm diet	48
2.	Constituents of vitamins mixture used in the basal diet	48
3.	Constituents of the salt mixture used in the basal diet	49
4.	Constituents of the hyperlipidemic diet for 100gm diet	49
5.	Gross chemical composition of the two studied	
	mushroom genera (on dry weight basis)	56
6.	Statistical analysis of gross chemical composition of the	
	two studied mushroom genera	57
7.	Caloric value of the two studied mushroom genera	58
8.	Statistical analysis of the caloric value of the two studied	
	mushroom genera (on dry weight basis)	59
9.	Minerals content of the two studied mushroom genera	
	mg/100g (on dry weight basis)	62
10.	Statistical analysis of mineral content of the two studied	
	mushroom genera (on dry weight basis)	63
11.	Amino acid composition of the two studied mushroom	
	genera mg/g (on dry weight basis)	64
12.	Computation of A/E ratio of the two studied mushroom	
	genera	66
13.	Computation of protein efficiency ratio (PER) of the two	
	studied mushroom genera	66
14.	Computation of biological value of protein (BV) of the	
	two studied mushroom genera	67
15.	Chemical score and limiting amino acids of the two	
	studied mushroom genera	68
16.	Fatty acid composition of total lipids of the two studied	
	mushroom genera	69
17.	Vitamin contents of B-complex and vitamin A in the two	
	studied mushroom genera (ppm)	70
18.	Effect of the six studied groups on the body weight gain	
	(g) of the experimental rats (induced hypercholesterol-	
	emia)	72
19.	Serum glucose content (mg/dl) in the six studied groups	
	of the experimental rats (induced hypercholesterolemia)	75

No.	Title	Page
20.	Serum triglycerides content (mg/dl) in the six studied groups of the experimental rats (induced hypercholesterolemia)	77
21.	Serum cholesterol content (mg/dl) in the six studied groups of the experimental rats (induced hypercholester-	7 7
	olemia)	82
22.	Serum HDL content (mg/dl) in the six studied groups of the experimental rats (induced hypercholesterolemia)	85
23.	Serum LDL content (mg/dl) in the six studied groups of	
2.4	the experimental rats (induced hypercholesterolemia)	88
24.	Serum VLDL content (mg/dl) in the six studied groups of the experimental rats (induced hypercholesterolemia)	91
25.	The relative weight of organs (g) in the six studied groups o the experimental rats (induced hypercholester-	
	lemia)	92
26.	Analysis of variance of the relative weight of organs (g)	7-
	in the six studied groups of the experimental rats	95
27.	Body weight gain (g) in the six studied groups of the	
	experimental rats (induced anemia)	99
28.	Effect of the two studied mushroom genera on	
20	hemoglobin (Hb g/dl) level of the experimental rats	100
29.	Effect of the two studied mushroom genera on red blood cells (RBCs×10 ⁶ /UL) of the experimental rats	101
30.	Effect of the two studied mushroom genera on white	101
50.	blood cell (WBC×10 ³ /UL) of the experimental rats	102
31.	Effect of the two studied mushroom genera on mean	102
	corpuscular valume (MCV fl) of the experimental rats	103
32.	Effect of the two studied mushroom genera on mean	
	corpuscular hemoglobin (MCH pg) of the experimental	
	rats	104
33.	Effect of the two studied mushroom genera on mean	
	corpuscular hemoglobin capacity (MCHC g/dl) of the	105
34.	experimental rats Effect of the two studied mushroom genera on	105
J 4 .	hematocrite value (HCT%) of the experimental rats	106
35.	Effect of the two studied mushroom genera on platelets	100
	counts (PLT×10 ³ /UL) of the experimental rats	107
	-vi-	

Title	Page
Effect of the two studied mushroom genera on AST/GOT	
(u/l) of the experimental rats	108
Effect of the two studied mushroom genera on ALT/GPT	
(u/l) of the experimental rats	108
Relative weight of organs (g) in the six studied groups of	
the experimental rats (induced anemia)	110
Analysis of variance of the relative weight of organs (g)	
in the six studied groups of the experimental rats	112
	Effect of the two studied mushroom genera on AST/GOT (u/l) of the experimental rats Effect of the two studied mushroom genera on ALT/GPT (u/l) of the experimental rats Relative weight of organs (g) in the six studied groups of the experimental rats (induced anemia) Analysis of variance of the relative weight of organs (g)

LIST OF FIGURES

No.	Title	Page
1.	Gross chemical composition of the two studied	1 age
1.	mushroom genera (on dry weight basis)	57
2.	Caloric value of the two studied mushroom genera (on	57
	dry weight basis)	58
3.	Minerals content of the two studied mushroom genera	20
	mg/100g (on dry weight basis)	62
4.	Effect of the six studied groups on the body weight gain	
	(g) of the experimental rats (induced hypercholesterol-	
	emia)	73
5.	Serum glucose content (mg/dl) in the six studied groups	
	of the experimental rats (induced hypercholesterolemia)	76
6.	Serum triglycerides content (mg/dl) in the six studied	
	groups of the experimental rats (induced hypercholester-	
	olemia)	78
7.	Serum cholesterol content (mg/dl) in the six studied	
	groups of the experimental rats (induced hypercholester-	
	olemia)	83
8.	Serum HDL content (mg/dl) in the six studied groups of	
	the experimental rats (induced hypercholesterolemia)	86
9.	Serum LDL content (mg/dl) in the six studied groups of	
	the experimental rats (induced hypercholesterolemia)	89
10.	Serum VLDL content (mg/dl) in the six studied groups of	
	the experimental rats (induced hypercholesterolemia)	92
11.	The relative weight of organs (g) in the six studied	
	groups of the experimental rats (induced hypercholester-	
	olemia)	93
12.	Body weight gain (g) in the six studied groups of the	100
10	experimental rats (induced anemia)	100
13.	Relative weight of organs (g) in the six studied groups of	110
	the experimental rats (induced anemia)	110

LIST OF MICROGRAPHS

No.	Title	Page
1.	Liver of experimental control rats from group I_1 (fed on basal diet)	124
2.	Liver of experimental rats from group I ₂ (untreated group fed on hyperlipidemic diet)	124
3.	Liver of experimental rats from group I ₂ (untreated group fed on hyperlipidemic diet)	125
4.	Liver of experimental rats from group I ₂ (untreated group fed on hyperlipidemic diet)	125
5.	Liver of experimental rats from group I ₃ (treated group fed on hyperlipidemic diet plus 10% <i>Agaricus bisporus</i>	
6.	of mushroom) Liver of experimental rats from group I ₃ (treated group	126
	fed on hyperlipidemic diet plus 10% Agaricus bisporus of mushroom)	126
7.	Liver of experimental rats from group I ₃ (treated group fed on hyperlipidemic diet plus 10% <i>Agaricus bisporus</i>	
8.	of mushroom) Liver of experimental rats from group I_4 (treated group	127
0.	fed on hyperlipidemic diet plus 10% Pleurotus ostreatus	127
9.	of mushroom) Liver of experimental rats from group I ₄ (treated group fed on hyperlipidemic diet plus 10% <i>Pleurotus ostreatus</i>	127
10.	of mushroom) Liver of experimental rats from group I ₅ (treated group	128
	fed on hyperlipidemic diet plus 5% Agaricus bisporus of mushroom)	128
11.	Liver of experimental rats from group I ₆ (treated group fed on hyperlipidemic diet plus 5% <i>Pleurotus ostreatus</i>	
12.	of mushroom) Liver of experimental control rats from group II ₁ (fed on	129
13.	basal diet)	130
	Liver of experimental rats from group II ₂ (untreated anemia group fed on basal diet)	130
14.	Liver of experimental rats from group II_2 (untreated anemia group fed on basal diet)	131

No.	Title	Page
15.	Liver of experimental rats from group II ₂ (untreated	101
1.0	anemia group fed on basal diet)	131
16.	Liver of experimental rats from group II_2 (untreated	122
17	anemia group fed on basal diet)	132
17.	Liver of experimental rats from group II_2 (untreated anemia group fed on basal diet)	132
18.	Liver of experimental rats from group II ₂ (untreated	132
10.	anemia group fed on basal diet)	133
19.	Liver of experimental rats from group II ₂ (untreated	133
17.	anemia group fed on basal diet)	133
20.	Liver of experimental rats from group II ₃ (treated anemia	100
	group fed on diet plus 10% Agaricus bisporus of	
	mushroom)	134
21.	Liver of experimental rats from group II ₄ (treated anemia	
	group fed on diet plus 10% Pleurotus ostreatus of	
	mushroom)	134
22.	Liver of experimental rats from group II ₅ (treated anemia	
	group fed on diet plus 5% Agaricus bisporus of	
	mushroom)	135
23.	Liver of experimental rats from group II ₆ (treated anemia	
	group fed on diet plus 5% Pleurotus ostreatus of	105
2.4	mushroom)	135
24.	Liver of experimental rats from group II ₆ (treated anemia	
	group fed on diet plus 5% Pleurotus ostreatus of	126
25.	mushroom) Spleen of experimental control rats from group II ₁ (fed	136
23.	on basal diet)	137
26.	Spleen of experimental control rats from group II_1 (fed	137
20.	on basal diet)	137
27.	Spleen of experimental rats from group II ₂ (untreated	10,
	anemia group fed on basal diet)	138
28.	Spleen of experimental rats from group II ₂ (untreated	
	anemia group fed on basal diet)	138
29.	Spleen of experimental rats from group II ₂ (untreated	
	anemia group fed on basal diet)	139
	Spleen of experimental rats from group II ₂ (untreated	
30.	anemia group fed on basal diet)	139

No.	Title	Page
31.	Spleen of experimental rats from group II ₃ (treated anemia group fed on diet plus 10% <i>Agaricus bisporus</i> of	
	mushroom)	140
32.	Spleen of experimental rats from group II ₃ (treated anemia group fed on diet plus 10% <i>Agaricus bisporus</i> of mushroom)	140
33.	Spleen of experimental rats from group II ₄ (treated anemia group fed on diet plus 10% <i>Pleurotus ostreatus</i> of	140
	mushroom)	141
34.	Spleen of experimental rats from group II_4 (treated anemia group fed on diet plus 10% <i>Pleurotus ostreatus</i> of	
	mushroom)	141
35.	Spleen of experimental rats from group II ₅ (treated anemia group fed on diet plus 5% Agaricus bisporus of	1.10
2.	mushroom)	142
36.	Spleen of experimental rats from group II ₆ (treated anemia group fed on diet plus 5% <i>Pleurotus ostreatus</i> of	1.40
27	mushroom)	142
37.	Liver of experimental control rats from group III ₁ (fed on basal diet)	143
38.	Liver of experimental rats group III ₂ (untreated carcinogenic group fed on basal diet)	143
39.	Liver of experimental rats group III ₃ (treated carcinogenic group fed on diet plus 10% <i>Agaricus bisporus</i>)	144
40.	Liver of experimental rats group III ₄ (treated carcinogenic group fed on diet plus 10% <i>Pleurotus ostreatus</i>)	144
41.	Liver of experimental rats group III ₆ (treated carcinogenic group fed on diet plus 5% <i>Pleurotus ostreatus</i>)	145
42.	Liver of experimental rats group III ₆ (treated carcinogenic group fed on diet plus 5% <i>Pleurotus ostreatus</i>)	145
43.	Spleen of experimental control rats from group III_1 (fed	173
	on basal diet)	146
44.	Spleen of experimental control rats from group III ₁ (fed on basal diet)	146
45.	Spleen of experimental rats from group III ₂ (untreated carcinogenic group fed on basal diet)	147