Chemical contaminants in dried herbs and aromatic plants and their risk assessment to Egyptian consumer

By

Wasfi Mohamed Thabet

B. Sc. Agric., Ain Shams University, 1981 Diploma of Environmental Sciences, Sciences, 1992 M.Sc. Agric., Ain Shams University, 2001

A Thesis Submitted for Fulfillment of the Requirement for Ph.D. Degree

in

Environmental Sciences
Department of Agricultural Science
Institute of Environmental Studies & Research
Ain Shams University

Under the supervision of:

1- Prof. Dr. Mohamed I. Abdel Megeed

Professor of Pesticides, Vice Dean of Faculty of Agriculture, Ain Shams University

2- Prof. Dr. Abdel Azeem M. El Hammady

Professor of Horticulture, Dean of Institute of Environmental Studies And Researches, Ain Shams University.

3- Prof. Dr. Saeid El Zemeity

Professor of Pesticides, Head of Agricultural Sciences Section, Institute of Environmental Studies And Researches, Ain Shams University.

4- Prof. Dr. Salwa Mohamed Ali Dogheim

Professor of Pesticides, Director of Lab. of Residue Analysis of Pesticides and Heavy Metals in Food, ARC.

Chemical contaminants in dried herbs and aromatic plants and their risk assessment to Egyptian consumer

By

Wasfi Mohamed Thabet

B. Sc. Agric., Ain Shams University, 1981 Diploma of Environmental Sciences, Sciences, 1992 M.Sc. Agric., Ain Shams University, 2001

A Thesis Submitted in Partial Fulfillment of the Requirement for the Doctor of Philosophy In Environmental Science

Department of Agricultural Science Institute of Environmental Studies & Research Ain Shams University

APPROVAL SHEET

Chemical contaminants in dried herbs and aromatic plants and their risk assessment to Egyptian consumer

By

Wasfi Mohamed Thabet

B. Sc. Agric., Ain Shams University, 1981Diploma of Environmental Sciences, Sciences, 1992M.Sc. Agric., Ain Shams University, 2001

This thesis has been approved for submission by the supervisors:

1- Prof. Dr. Mohamed I. Abdel Megeed

Professor of Pesticides, Faculty of Agriculture, Ain Shams University.

2- Prof. Dr. Abdel Azeem M. El Hammady

Professor of Horticulture, Faculty of Agriculture, Ain Shams University

3- Prof. Dr. Saeid El Zemeity

Professor of Pesticide, Head of section of plant protection, Faculty of Agriculture, Ain Shams University.

4- Prof. Dr. Salwa Mohamed Ali Dogheim

Professor of Pesticide, Central Lab for Residue Analysis of Pesticides And heavy metals in Food.

ABSTRACT

Name : Wasfi Mohamed Thabet

Title of thesis: Chemical contaminants in dried herbs and aromatic plants

and their risk assessment to Egyptian consumer.

Degree: Submitted for Fulfillment of the Requirement for Ph.D.

This work has been carried out to investigate the present situation of aromatic and medicinal plants contamination with pesticide residues in the different local markets of seven governorates from January 2003 to December 2004.

Monitoring of 25 organophosphorus and organonitrogen pesticide was carried out in 17008 samples of aromatic and medicinal plants.

The results revealed that malathion was the most frequently detected followed by profenofos and chlorpyrifos (35.77%).

The dietary intakes of the five most frequently detected pesticides were calculated as estimated daily intakes (EDI's).

Key words: Pesticide residues, Organophosphorus, Organonitrogen, Aromatic plants, Medicinal plants, Dietary intake.

ACKNOWLEDGMENT

My grateful thanks are due to the many people who have given of their time and assistance towards the completion of this thesis.

I would like to express my profound gratitude, and my immense appreciation to **Prof. Dr. Mohamed I. Abdel Megeed** Professor of **Pesticides, Faculty of Agriculture, Ain Shams University**, who offered his precious time and reassuring advice for supervising this study. He was very generous with his knowledge. It is actually due to him that this work has been fully accomplished

I would like to express my profound gratitude, and my immense appreciation to **Prof. Dr. Abdel Azeem M. El Hammady** Professor of Horticulture, **Faculty of Agriculture**, **Ain Shams University**, who offered his precious time and reassuring advice for supervising this study. He was very generous with his knowledge. It is actually due to him that this work has been fully accomplished

I would like to express my profound gratitude, and my immense appreciation to **Prof. Dr. Saeid El Zemeity.** Professor of **Pesticide**, **Head of section of plant protection**, **Faculty of Agriculture**, **Ain Shams University**, who offered his precious time and reassuring advice for supervising this study. He was very generous with his knowledge. It is actually due to him that this work has been fully accomplished

I do feel indebted to **Prof. Dr. Salwa Mohamed Ali Dogheim,** Professor of Pesticide, Central Lab. of Pesticides, ARC for her encouragement and continuous supervision.. She has spared no effort at any time in guiding me to bring this work to its best form by her experience and patient guidance. It is actually due to her this work became a reality.

Contents

	Approv	val sheet	ii
	Abstrac	et	iv
	Acknow	wledgement	V
I.	INTOI	DUCTION	1
II.	REVIE	EW OF LITERATURE	4
	1	Monitoring of pesticide residues in aromatic and	4
		medicinal plants	
	1.1	Effect of household processing on pesticide residues	17
	1.2	Dietary intake studies	18
	2	Monitoring of heavy metals in aromatic and medicinal	20
		plants	
III.	MATE	CRIALS AND METHODS	30
	1	Monitoring of pesticide residues in Spices, herbs,	30
		aromatic and medicinal plants:	
	1.1	Sampling	30
	1.2	1 &	31
	1.3	Pesticides studied	31
		List of organophosphorus and organonitrogen pesticides	33
	1.4	Equipment and chemicals	37
		1.4.1 Equipment	37
		1.4.2 Glassware	37
		1.4.3 Chemicals and reagents	38
		1.4.4 Others	38
	1.5	Extraction	38
		GC conditions	39
	1.7		39
	1.8	Quality assurance procedure	40
	2	Monitoring of heavy metals in spices, herbs, aromatic and	42
	0.1	medicinal plants.	10
	2.1	Sampling	42
	2.2	Reagents	42
	2.3	Apparatus and Equipments.	43
	2.4	Preparation of standard solutions	43
	2.5	Determination Determination of plant somples	44
	2.5.1	Determination of plant samples	44
	2.5.2	Atomic absorption measurement Calculation	44 45
	7.73	т яксиняной	47

vii CONTENTS

	2.6	Quality procedure	46
IV.	RESU	JLTS AND DISCUSSION	49
	1	Monitoring of pesticide residues in aromatic and medicinal plants	49
	2	Dietary intake studies	86
	3	Monitoring of heavy metals in spices, herbs, aromatic and medicinal plants.	99
V.	SUM	MARY	115
	1	Monitoring of pesticide residues in aromatic and medicinal plants	115
	2	Monitoring of heavy metals residues in aromatic and medicinal plants	88
VI.	REFI	ERENCES	123
VII.	ARBI	IC SUMMARY	

List of figures:

Figure 1	Increased No. of Samples Contaminated with Major	74
	Contaminants between 2003 and 2004	
Figure 2	No. of Total, Uncontaminated, Contaminated not	75
	Violated and Violated Samples.	
Figure 3	% No. of Samples of Aromatic and Medicinal Plants	79
	Non-Contaminated, Total Contaminated, Contaminated	
	with (1), with (2) and with (3) or more pesticides residue	
Figure 4	No. of total, uncontaminated, cont, not violated and violated samples during 2003.	104
Figure 5	No. of total, uncontaminated, contaminated not violated and violated samples during 2004	105

List of Tables:

- Table 1 English name, Latin name, family name, chemical 32 compounds, properties and forms of use of the studied aromatic and medicinal plants.
- Table 2 Average recoveries and coefficient of variation (CV%) of the studied pesticides in different aromatic and medicinal plants.
- Table 4 Minimum, Maximum, Mean in mg/kg as well as Frequencies, 51 Number and percentages of contaminated samples, violated samples and the detected metals residues in Spices and aromatic plants samples collected from Egyptian local markets during 2003.
- Table 5 Minimum, Maximum, Mean in mg/kg as well as Frequencies, Number and percentages of contaminated samples, violated samples and the detected metals residues in Spices and aromatic plants samples collected from Egyptian local markets during 2004.
- **Table 6** Frequencies of different pesticides detected in Aromatic **70** plant samples collected from January 2003.
- **Table 7** Frequencies of different pesticides monitored in Aromatic 71 plant samples collected from January 2004 to December 2004.
- Table 8 Number of analyzed samples, uncontaminated samples, 72 contaminated samples, samples of residues less than or equal MRL, and samples with residues exceed the MRL.
- **Table 9** No. of Aromatic plant samples contain one, two, three or **78** more pesticides residue during 2003 and 2004.

	organonitrogen content from January 2003 to December 2003.	
Table 11	Aromatic plant samples analyzed for their organophosphorus, and organonitrogen content from January 2004 to December 2004.	82
Table 12	Estimated Daily Intakes (EDI's) of chlorpyrifos, chlorpyrifosmethyl, dimethoate, malathion and profenofos residues detected in majoram samples collected from different Egyptian governorates from January 2003 to December 2004.	88
Table 13	Estimated Daily Intakes (EDI's) of chlorpyrifos, chlorpyrifosmethyl, dimethoate, malathion and profenofos residue detected in dry coriander samples collected from different Egyptian governorates from January 2003 to December 2004.	89
Table 14	Estimated Daily Intakes (EDI's) of chlorpyrifos, chlorpyrifosmethyl, dimethoate, malathion and profenofos residue detected in dry mint samples collected from different Egyptian governorates from January 2003 to December 2004.	90
Table 15	Estimated Daily Intakes (EDI's) of chlorpyrifos, chlorpyrifosmethyl, dimethoate, malathion and profenofos residue detected in basil samples collected from different Egyptian governorates from January 2003 to December 2004.	91
Table 16	Estimated Daily Intakes (EDI's) of chlorpyrifos, chlorpyrifosmethyl, dimethoate, malathion and profenofos residue detected in anise seed samples collected from different Egyptian governorates from January 2003 to December 2004.	92
Table 17	Estimated Daily Intakes (EDI's) of chlorpyrifos, chlorpyrifosmethyl, dimethoate, malathion and profenofos residue in Cammomile samples collected from different Egyptian govrnorates from January 2003 to December 2004.	93
Table 18	Estimated Daily Intakes (EDI's) of chlorpyrifos, chlorpyrifosmethyl, dimethoate, malathion and profenofos residue detected in cumin samples collected from different Egyptian governorates from January 2003 to December 2004.	94

 Table 10
 Aromatic plant samples analyzed for their organophosphorus, and

81

- Table 19 Estimated Daily Intakes (EDI's) of chlorpyrifos, chlorpyrifosmethyl, dimethoate, malathion and profenofos residue detected in caraway samples collected from different Egyptian governorates from January 2003 to December 2004.
- Table 20 Estimated Daily Intakes (EDI's) of chlorpyrifos, chlorpyrifosmethyl, dimethoate, malathion and profenofos residue detected in D. dill samples collected from different Egyptian governorates from January 2003 to December 2004.
- Table 21 Estimated Daily Intakes (EDI's) of chlorpyrifos, chlorpyrifosmethyl, dimethoate, malathion, pirimicarb, and profenofos residues detected in aromatic and medicinal plants in Egypt on 2003.
- **Table 22** Estimated Daily Intakes (EDI's) of chlorpyrifos, chlorpyrifosmethyl, dimethoate, malathion, and profenofos residues detected in aromatic and medicinal plants in Egypt on 2004.
- Table 23 Minimum, Maximum, Mean in mg/kg as well as Frequencies, 100 Number and percentages of contaminated samples, violated samples and the detected metals in Spices and aromatic plants samples collected from Egyptian local markets during 2003.
- Table 24 Minimum, Maximum, Mean in mg/kg as well as Frequencies, 102 Number and percentages of contaminated samples, violated samples and the detected metals in Spices and aromatic plants samples collected from Egyptian local markets during 2004.

Table (6): Frequencies of different pesticides detected in Aromatic plant samples collected from January 2003 to December 2003

Pesticide		Total	%										
	Anise 147	Basil 961	Camomile 1424	Cumin 96	Fennel 635	Marjoram 964	D.Mint 2164	Caraway 327	Coriander 277	Dill 157	Hibiscus 290	7442	contamination
Atrazine	17/	701	3	70	033	704	2104	321	211	137	270	3	0.04
Carbaryl		3	5		1	2	10		1			22	0.30
Chlorpyrifos	39	175	121	57	51	212	621	7	6	97	8	1394	18.73
Chlorpyrifos- methyl	16	4	9	12	31	42	445	1	1	32	8	561	7.54
Cyanofos					1							1	0.01
Diazinon	11	5	12	36	24	16	23	4		3		134	1.80
Dicofol						1						1	0.01
Dimethoate	17	13	241	38	75	661	263	3	5	17		1333	18.00
Malathion	109	36	494	86	480	341	273	19	17	91	3	1949	26.20
Metalaxyl			15	48								63	0.85
Omethoate			12			2	15					29	0.39
Parathion- methyl						5	2					7	0.10
Phenthoate		1		3		1	4			1		10	0.13
Pirimicarb			3	8	2	2	23			1		39	0.53
Pirimiphos- methyl		3	2	2	2	2	638					649	8.72
Profenophos	88	81	139	76	148	167	5	10	12	96	1	823	11.06
Pyrazophos			7	8								16	0.22
Triazophos			1	2		8	20			1		32	0.43
Fenitrothion			1	2								3	0.04
Tolclofos- methyl			25									25	0.34
Total	280	321	1090	288	784	1462	2342	43	42	339	12	7094	

Table (7): Frequencies of different pesticides monitored in Aromatic plant samples collected from January 2004 to December 2004

Pesticide	4 10 De		Total	%									
						in aromatic p	•						contamination
	Anise	Basil	Camomile	Cumin	Fennel	Marjoram	D.Mint	Caraway	Coriander	Dill	Hibiscus		
	200	1491	1930	61	754	1370	2655	337	209	233	754	9566	
Atrazine							1					1	0.01
Carbaryl		7	6			3	10					26	0.27
Chlorpyrifos	131	594	318	48	173	793	1296	24	10	206	18	3611	37.80
Chlorpyrifos-	13	139	10	13	2	191	431			71		870	9.10
methyl													
Diazinon	23	26	19	28	40	67	20	3		7		234	2.45
Dicofol						36						36	0.38
Dimethoate	37	124	542	41	203	1113	593	5	3	25		2686	28.10
Malathion	180	116	875	60	643	809	478	39		127	17	3351	35.03
Metalaxyl	1		14	22			1					38	0.40
Omethoate			5			7	17		7			30	0.31
Parathion-ethyl				1								1	0.01
Parathion-methyl	1					3	1					5	0.05
Phenthoate				8	1	7	4	1		1		22	0.23
Pirimicarb				8	1		31					40	0.42
Pirimiphos-methyl	1		2		25	1			1			30	0.31
Profenophos	163	368	281	55	326	578	838		7	159	1	2804	29.31
Pyrazophos				4				28				32	0.34
Triazophos			1	1		3						5	0.05
Fenitrothion		1	2	2		2	4	1		1		13	0.14
Tolclofos-methyl		1	14	1		1						17	0.18
Ethion	1			2		1						4	0.04
phosalone		1		1			1	1				4	0.04
Pendimethalin							1			3		4	0.04
fenvalerate						1						1	0.01
Tetradifon						2						2	0.02
Endosulfan beta							7					7	0.07
Total	551	1377	2089	295	1414	3618	3734	102	28	600	36	13860	

Table (8): Number of analyzed samples, uncontaminated samples, contaminated samples, samples of residues less than or equal MRL, and samples with residues exceed the MRL

A nome stick	Year	Number of	Uncontamin	ated samples	Contamina	ted samples		Contamina	ted samples	
Aromatic plant		analyzed	• •	0.4	• 7	0.4	Not v	iolated	Vio	lated
		samples	No.	%	No.	%	No.	%	No.	%
Anise seed	2003	147	38	25.6	109	74.1 x	65	44.2	44	29.9
	2004	200	20	10	180	90 x	144	72	36	18
Basil	2003	961	786	81.8	175	18.2	175	18.2	-	
	2004	1491	897	60.2	594	39.8	591	39.6	3	0.2
Camomile	2003	1424	930	65.3	494	34.7	455	31.95	39	2.7
	2004	1930	1055	54.7	875	45.3	830	43	45	2.3
Caraway	2003	327	308	94.2	19	5.8	19	5.8	-	
	2004	337	298	88.4	39	11.6	38	11.3	1	0.3
Cumin	2003	96	10	13.4	86	89.6x	34	35.4	52	54.16
	2004	61	1	1.6	60	98.4x	24	39.3	36	59
Coriander	2003	277	260	93.9	17	6.1	17	6.1	-	
	2004	219	209	95.4	10	4.57	10	4.6	-	
Dill	2003	157	60	38.2	97	61.8x	97	61.8	-	
	2004	233	27	11.6	206	88.4x	198	85	8	3.4
Fennel	2003	635	155	24.4	480	75.6x	476	75	4	0.63
	2004	754	111	14.7	643	85.3x	641	85	2	0.265
Marjoram	2003	964	303	31.4	661	68.6x	651	67.5	10	1.04
-	2004	1370	257	18.8	1113	81.24x	1077	78.6	36	2.63
Mint	2003	2164	1526	70.5	638	29.5	550	25.4	88	4.06
	2004	2655	1359	51.2	1296	48.8	1296	48.8	-	
Hibiscus	2003	290	282	97.	8	2.8	8	2.8	-	
	2004	316	298	94	18	5.7	18	5.7	-	
Total		17008	9190	54%	7818	45.96	7414	43.6%	404	2.38%

Table (4): Minimum, Maximum, Mean in mg/kg as well as Frequencies, Number and percentages of contaminated samples, violated samples and the

detected metals residues in Spices and aromatic plants samples collected from Egyptian local markets during 2003.

Commodity	Total no. of samples	Total Contaminated samples		Detected pesticides	Pesticide level (mg/kg)		Mean mg/kg	Frequency		MRL's (mg/kg)	Violation in contaminated samples			n in total aples
		No.	%		Min. mg/kg	Max. mg/kg		No.	%		No.	%	No.	%
Anise seed	147	109	74.1	Chlorpyrifos	0.025	11	0.72	39	26.53	5	-	-	44	29.9
				chlorpyrifos-methyl	0.025	1.2	0.25	16	10.88	1	1	0.92		
				diazinone	0.015	2.9	0.48	11	7.48	5	-	-		
				dimethoate	<loq< td=""><td>0.82</td><td>0.16</td><td>17</td><td>11.56</td><td>5</td><td>-</td><td></td><td></td><td></td></loq<>	0.82	0.16	17	11.56	5	-			
				malathion	0.025	23	2.41	109	74.15	2	44	40.37		
				profenofos	0.025	44	1.95	88	59.86	_		-		
Chamomile	1424	494	34.7	Atrazine	0.5	3.7	1.65	3	0.21	-	-	-	39	2.74
				Carbaryl	<loq< td=""><td>3</td><td>1.14</td><td>5</td><td>0.35</td><td>_</td><td>-</td><td>-</td><td></td><td></td></loq<>	3	1.14	5	0.35	_	-	-		
				chlorpyrifos	0.025	3.1	0.2	121	8.50	5	-	-		
				chlorpyrifos-methyl	0.05	0.85	0.22	9	0.07	1	-	-		
				diazinon	0.015	1.9	0.27	12	0.84	5	-	-		
				dimethoate	<loq< td=""><td>17</td><td>0.98</td><td>241</td><td>16.93</td><td>5</td><td>18</td><td>3.64</td><td></td><td></td></loq<>	17	0.98	241	16.93	5	18	3.64		
				fenitrothion	0.025	0.025	0.025	1	0.07	7	-	-		
				malathion	0.025	29	0.81	494	34.7	2	39	7.89		
				metalaxyl	0.44	2.2	1.04	15	1.05	5	-	-		
				omethoate	0.21	24	6.9	12	0.84	_	-	-		
				pirimicarb	0.025	0.65	0.3	3	0.21	5	-	-		
				pirimiphos-methyl	0.08	0.11	0.1	2	0.14	3	-	-		
				profenofos	0.025	3.1	0.28	139	9.80	-	-	-		
				pyrazophos	0.07	0.16	0.12	7	0.49	-	-	-		
				tolclofos-methyl	0.025	0.18	0.04	25	1.76	-	-	-		
				triazophos	0.025	0.025	0.025	1	0.07	-				

^{*} To calculate the mean, samples at <LOQ were considered being at 1/2 LOQ.