

EVALUATION OF SERUM INTERLEUKEN10 & INTERFERON-γ IN PATIENTS WITH MULTIPLE WARTS AFTER TREATMENT WITH BCG VACCINE

Thesis

Submitted for Partial Fulfillment of Master Degree In Dermatology, Venereology and Andrology

> Shaimaa Awad Mosaad Taha (M.B;B.Ch.)

Supervised by

Prof. Dr. Nader Fouad Ragab

Professor of Dermatology, Venereology and Androlog Faculty of Medicine - Ain Shams University

Prof. Dr. Mahmoud Abdel-Rahim Abdallah

Professor of Dermatology, Venereology and Andrology Faculty of Medicine - Ain shams University

Dr. Dina Al Sayed El Shennawy

Assistant Professor of clinical Pathology Faculty of Medicine - Ain shams University

Faculty of Medicine
Ain Shams University
2017

Acknowledgement

First, all thanks to ALLAH for blessing this work until it has reached its end, as a little part of his help throughout life.

I would like to express my gratitude and special thanks to *Prof. Nader Fouad Ragab*, *Professor of Dermatology*, *Venereology and Andrology*, *Faculty of Medicine*, *Ain Shams University*. I am greatly indebted for his great help, constant encouragement, close supervision and care throughout carrying out this work until it came to light. Without his ideas, efforts, guidance and cooperation, this work would not be possible. It is great honor to work under his supervision, words cannot express his great efforts.

I would like to express my great gratitude and profound appreciation to *Prof. Mahmoud Abdel-Rahim Abdallah, Professor of Dermatology, Venereology and Andrology, Faculty of Medicine, Ain Shams University,* for his remarkable suggestions and close supervision, which were behind the fruitful outcome of the practical part of this work.

I am very much indebted to *Dr. Dina Al-Sayed El-Shennawy*, Assistant Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University for her continuous encouragement, support and endless advice.

Great thanks to all staff members of the Faculty of Medicine, Ain Shams University for their support, I want also to express my gratitude towards our kind patients who let us hope to complete this work.

Shaimaa 7aha

List of Contents

Ti	Title Page		
•	List of Abbreviations		
•	List of Tables		
•	List of FiguresVII		
•	Introduction		
•	Aim of the Work		
•	Review of Literature		
	- Human Papilloma Virus 5		
	- Immune Responses to Human Papilloma Virus		
	- Treatment of Human Papilloma Virus infections		
	- Bacille Calmette-Guérin (BCG) Vaccine 78		
•	Patients and Methods		
•	Results		
•	Illustrative cases		
•	Discussion		
•	Summary		
•	Conclusions and Recommendations 156		
•	References		
•	Arabic Summary		

List of Abbreviations

5-FU5-Fluorouracil **AP1**.....Activator Protein 1 **APCs**.....Antigen-Presenting Cells **BCG MRDJ**BCG Moreau Rio De Janeiro **BCG**Bacillus Calmette-Guérin BMPsBone Morphogenic Proteins CINCervical Intraepithelial Neoplasia CMI.....Cell Mediated Immunity **CPG**Cytokine Phosphate Guarine **CREB**......CAMP Response Element binding protein **CSIF**Cytokine Synthesis Inhibitory Factor **CTL**.....Cytotoxic T Lymphocytes **DC**Dendritic Cells **DCP**Diphencyprone **DNCB**......Dinitrochlorobenzene **DPCP**Diphenylcyclopropenone **DTH**.....Delayed Type Hypersensitivity **DUSP1**......Dual Specifity phosphatase 1 **E**.....Early Viral Gene **ECM**.....Extracellular Matrix EGWs.....External Genital Warts **ERK**.....Extracellular Signal Regulated Kinases FC.....Fragment, Crystallizable FOXP3.....Factor Forkhead Box P3 **GM-CSF**Granulocyte Colony Monocyte Stimulating Factor

List of Abbreviations

GSK Glycogen Synthase Kinase **HPVs**.....Human Papillomaviruses **HSCs**.....Hematopoietic Stem Cells **HSIL**High Grade Squamous Intraepithelial Lesion HSPGsHeparan Sulfate Proteoglycans **IL-10**.....Interleukin-10 **ISGs**.....Interferon Stimulated Genes JAKJanus Activated Kinase L....Late Viral Gene **LC**.....Langerhans cell LCRLong Control Region LSIL.....Low Grade Squamous Intraepithelial Lesion **MAPK**Mitogen Activated Protein Kinase **MCP**.....Monocyte Chemotactic Protein **MHC**Major Histocompatibility Complex **MIP**......Macrophage Inflammatory Protein NF-KB......Nuclear Factor KB NKNatural Killer PCRPolymerase Chain Reaction PI3KPhosphoinsitide 3 Kinase **PPD**......Purified Protein Derivative PRPSPattern Recognition Receptors SADBE.....Squaric Acid Dibutylester STAT3Signal Transducer and Activator of Transcription 3 **TB**.....Tuberculosis

List of Abbreviations

List of Tables

Table N.	Title Page
Table (1):	Common HPV genotypes7
Table (2):	The HPV proteins and functions 10
Table (3):	Disease associations with selected
	human papillomavirus types 13
Table (4):	The most common immune-
	therapeutic methods for the
	treatment of warts49
Table (5):	Demographic data of studied
	patients107
Table (6):	Patients included in the study;
	demographic data, response to
	treatment and side effects 109
Table (7):	Characters of warts111
Table (8):	Interleukin-10 and IFN-γ levels
	among patients and controls before
	BCG vaccination 112
Table (9):	Interleukin-10 and IFN- γ levels
	among patients and controls after
	BCG vaccination 114
Table (10):	Interleukin-10 and IFN-γ levels in
	patients before and after BCG
	vaccination116
Table (11):	Response and side effects of BCG
	vaccination119
Table (12):	Correlative study between response of
	BCG vaccination and other
	parameters120

List of Tables (Continue)

Table N.	Title Page
Table (13):	Correlative study between IL-10 after
	BCG vaccination and other
	parameters122
Table (14):	Correlative study between INF-y
	after BCG vaccination and other
	parameters
Table (15):	Interleukin-10 and IFN-γ levels in
	relation to response124
Table (16):	Interleukin-10 and IFN-γ levels in
	relation to number of warts 126
Table (17):	Criteria of warts in relation to
	response

List of Figures

Figure N.	Title	Page
Fig. (1):	Schematic representation of human papillomavirus (HPV) showing icosahedral symmetry	5
Fig. (2):	The infection and maturation cycle of HPV in keratinocytes	
Fig. (3):	An abbreviated version of the cytokine network highlighting the molecular communication between different cell types in the immune system	
Fig. (4):	HPV reaches the basement membrane of the cervix through microtrauma	l
Fig. (5):	Family history in studied cases	108
Fig. (6):	Comparison between IL-10 level in patients before BCG vaccination and control groups	l
Fig. (7):	Comparison between IFN-γ level in patients before BCG vaccination and control groups	l
Fig. (8):	Comparison between IL-10 level in patients after BCG vaccination and control groups	l
Fig. (9):	Comparison between IFN-y level in patients after BCG vaccination and control groups	l

List of Figures (Continue)

Figure N.	Title Pag	е
Fig. (10):	IL-10 level before and after BCG vaccination among studied patients 11	16
Fig. (11):	IFN-γ level before and after BCG vaccination among studied patients 11	
Fig. (12):	Negative correlation between duration of lesion and response to BCG vaccination	21
Fig. (13):	Negative correlation between number of sessions and response to BCG vaccination	
Fig. (14):	Positive correlation between IL-10 level before and after BCG vaccination	
Fig. (15):	Positive correlation between INFy level before and after BCG vaccination	
Fig. (16):	IL-10 level before and after BCG vaccination according to BCG vaccination response	
Fig. (17):	IFN-γ level before and after BCG vaccination according to BCG vaccination response	
Fig. (18):	IL-10 level before and after BCG vaccination according to number of warts	
FIG. (19):	IFN-γ level before and after BCG vaccination according to number of warts	27

INTRODUCTION

Warts are benign epithelial neoplasms affecting the epithelium of the skin and mucous membranes that result from infection with human papillomavirus (HPV) (Yazdanfar et al., 2008).

Common warts affect patients' quality of life by causing adverse psychological effects, also certain types of HPV may induce life-threatening malignancies (*Rijkaart et al., 2012*). HPV 16 has also been strongly associated with various head and neck cancers including head and neck squamous cell carcinoma and oropharyngeal carcinoma of the tonsils (*Rautava et al., 2012*). The incidence of HPV induced oral cancers appears to be increasing (*Gaston and Garry, 2012*).

HPVs are the causative agents of a variety of benign and cancerous lesions of the skin and other epithelial surfaces. At least 189 HPV genotypes have been described (*Gooi et al.*, 2016).

Most HPV types are associated with one or a few histopathologically distinct types of lesions and may be restricted to a particular location on the body. HPV types 2, 4, 26, 29 and others are responsible for common warts (verruca vulgaris), which are slightly raised rough surface epithelial proliferations that occur most often on the hands, can also grow elsewhere on the body. Other types of warts include plantar warts (verruca plantaris) that occur most commonly on the soles of the feet (HPV 1 and others), flat warts (verruca plana) usually appearing on the face (HPV

3, 10, 38 and others), butcher's warts of the hands and fingers (HPV 7), oral and genital warts (condyloma acuminata; HPV 6, 11, 16, 18 and many others) (Gaston and Garry, 2012).

BCG is a bacterial preparation of a strain called Bacillus-Calmette-Guerin. It contains live attenuated mycobacterium bovis that has lost its virulence in humans by being especially cultured in an artificial medium for years and was developed as a vaccine against tuberculosis (*Fine et al.*, 1999).

BCG was introduced as a prophylactic agent against tuberculosis (TB), accidentally it has been found that the leprosy incidence has decreased tremendously. The rationale of the use of BCG as a protective vaccine against leprosy rests on the assumption that cross reacting antigens exist between Mycobacterium leprae and BCG and that following BCG vaccination, protective immunity against leprosy will be developed (**Zodpey, 2007**).

The BCG also had been used in the treatment of malignant melanoma, transitional cell carcinoma of the bladder, in alopecia areata and recurrent oral aphthosis (Sharquie and Hayani, 2005). The percentage of skin disease among BCG vaccinated individuals was significantly lower compared with healthy individual controls and these diseases include psoriasis, fungal infection, cutaneous leishmaniasis, molluscum contagiosum and lichen planus indicating that BCG decreases the frequency of skin diseases (Sharquie et al., 2008).

Patients with condyloma accuminata had shown an imbalance of Th1/Th2 cytokines production (**Zuo et al., 2004**). Th2 cells secrete IL-4 and IL-10 (and other cytokines) and help antigen-primed B lymphocytes differentiate into plasma cells and secrete antibodies; the effector molecules of humoral responses. Th1 cells secrete IFN-γ and create a milieu in which key cytotoxic effectors, macrophages, natural killer cells and cytotoxic CD8+ T lymphocytes are activated, generating cell mediated immunity (**Rouse and Suvas, 2004**).

A lot of works attempted to prove the efficacy of BCG vaccine as an immunotherapy in warts and other immunomediated diseases whether by topical application (Metawea et al., 2005), intradermal administration (Sharquie et al., 2008) or intralesionally the study of Yuan et al. (2007).

The mechanism of action of BCG in the treatment of warts, could be explained on the basis of stimulating macrophages, T and B lymphocytes, natural killer cells function that might help in resolution of the viral warts (Sharquie et al., 2008).

AIM OF THE WORK

The aim of this work was to evaluate the level of serum IL-10, IFN- γ before and after multiple intradermal injections of BCG vaccine and to compare the levels in clinical responders versus non responders to evaluate its possible clinical efficacy in the treatment of warts.