Anesthesia for video-assisted thoracoscopy

Essay

Submitted for partial fulfillment of Master Degree in Anesthesiology

By

Osama Saleh Omar

M.B.B; Ch

Under supervision of

Prof. Dr. Omar Mohamed Taha ElSafty

Professor of Anesthesia and intensive care Faculty of Medicine, Ain-Shams University

Prof. Dr. Heba Bahaa ElDin ElSerwi

Assistant Professor of Anesthesia and intensive care Faculty of Medicine, Ain-Shams University

Dr. Eman Mohamed Abo Seif

Lecturer in Anesthesia and intensive care Faculty of Medicine, Ain-Shams University

> Faculty of Medicine Ain Shams University 2010

ACKNOWLEDGEMENT

First of all, thanks to **GOD** for bleesing this work.

I Would like to express my unlimited gratitude and deepappreciation to **Prof. Dr. Omar Mohamed Taha El Safty**, Professor of Anesthesia and intensive care, Ain Shams University, for giving me the privilege of working under his supervision, and for his encouragement and eminent guidance and support.

My deepest thanks and sincere gratitude to **Prof. Dr. Heba Bahaa ElDin El Serwi**, Professor of Anesthesia and intensive care

, Ain Shams University, for her gracious supervision and outstanding assistance in performing this work.

I Would also like to thank **Dr. Eman Mohamed Kamal Abu Saif,** Lecturer in Anesthesia and intensive care, Ain Shams

University, for her kind help and for the great effort she has done throughout the whole work.

Osama Saleh Omar

List of Figures

Figure		
(Fig.1):	Distribution of blood flow in the isolated lung.	8
(Fig.2):	Distribution of ventilation, blood flow, and	10
	ventilation-perfusion ratio in the normal,	
	upright lung.	
(Fig.3):	The standard lateral decubitus position.	16
(Fig.4):	Schematic representation of mediastinal shift	18
	and paradoxical respiration in the spontaneously	
	ventilating patient with an open chest who is	
	placed in the lateral decubitus position	
(Fig.5):	The left-hand side of the schematic shows the	20
	distribution of ventilation in the awake patient	
	(closed chest) in the lateral decubitus position.	
(Fig.6):	The closed-chested anesthetized condition with	21
	the open-chested anesthetized and paralyzed	
	condition.	
(Fig.7):	Schematic representation of two-lung ventilation	22
	versus one-lung ventilation (OLV).	
(Fig.8):	Effect of 1 MAC isoflurane anesthesia on shunt	63
	during one-lung ventilation (1LV) of normal	
	lungs.	
(Fig.9):	Schematic diagram depicting the essential	66
	features and parts of left-sided and right-sided	
	double-lumen endotracheal tubes.	
(Fig.10):	A. Sketch of the red rubber (nondisposable)	66
	Carlens double-lumen endotracheal tube. (B)	
	Close-up of the placement of the red rubber	

	Carlens double-lumen endotracheal tube at the carina.		
(Fig.11):	Sketch of the left-sided red rubber Robertshaw double-lumen endotracheal tube.	68	
(Fig.12):	Schematic diagram depicting the passage of the left-sided double-lumen endotracheal tube in a supine patient.	72	
(Fig.13):	Lung separation with a single-lumen tube, fiberoptic bronchoscope, and right lung bronchial blocker.	78	
(Fig.14):	Effect of 10 cm H2O PEEP on FRC. It is postulated that, in patients having PaO2 <80 mm Hg with ZEEP, FRC is low.	81	

ABBREVIATIONS

ABG Arterial blood gas

ASA American Society of Anesthesiologist

ATP Adenosine triphosphate

CAMP Cyclic adenosine monophosphate

COPD Chronic obstructive pulmonary disease

CPAP Continuous positive airway pressure

CSF Cerebro spinal fluid

CVP Central venous pressure

DLT Double lumen endotracheal tube

ETCO² End tidal carbon dioxide

FET Forced expiratory technique

FEV1 Forced expiratory volume in one second

FIO² Inspired oxygen fraction

FVC Forced vital capacity

HPV Hypoxic pulmonary vasoconstriction

KPa Kilo Pascal

MAC Minimum alveolar concentration

OLV One lung ventilation

PA Pulmonary artery or Alveolar Pressure

PAB Pressure of abdominal content

PAO² Alveolar oxygen tension

PaO² Arteriolar partial pressure of oxygen

PCO² Carbon dioxide tension

PEEP Positive end-expiratory pressure

PET Positron emission tomography

PETCO² End tidal co² tension

PFR Postoperative peak flow rate

PPO Predicted postoperative

PpV Pulmonary venous pressure

PVR Pulmonary vascular resistance

QS Venous admixture

Q SP Physiologic shunt

QT Total cardiac output

RV Right ventricle or Residual volume

SPO² Oxygen saturation pressure

SVO² Mixed venous oxygen saturation

TLC Total lung capacity

TLV Two lung ventilation

VATS Video assisted thoracoscopy

VA/Q Ventilation – perfusion ratio

VT Tidal volume

ZEEP Zero end expiratory pressure

INTRODUCTION

Definition:

Video-assisted thoracic surgery (VATS) involves the performance of any thoracic procedure through small thoracic incisions 2cm to 4 cm using trocars, a thoracoscope and a video monitor (*Shi-ping Luh et al.*, 2006).

Advantages of endoscopic surgery:

Compared with open thoracotomy, video-assisted thoracoscopic surgery is considered to be :

- 1- Minimally invasive.
- 2- Less postoperative pain.
- 3- Earlier mobilization.
- 4- Lower overall morbidity.
- 5- A shortened hospital stay.
- 6- Reduced costs.
- 7- A cosmetic incision.
- 8- A reduced operating time (Jay B. Brodsky et al., 2000).

Video-assisted imaging system amplifies the function of thoracoscopy. It cannot only magnify the image with the aid of better instruments, but also share the images with all people performing this procedure (*LUH Shi- ping et al.*, 2005).

Aim of the work

This essay aims at discussing recent advances in indications, contraindication, pathophysiological considerations in relation to thoracic surgery, cardio pulmonary effects of gas insufflation, anesthetic management and complications of using video-assisted thoracoscopy.

Indications Of Video-Assisted Thoracoscopy (VATS)

The VATS approach is used for simple diagnostic and therapeutic procedures involving the pleura, lungs, and mediastinum (Jay B. Brodsky et al., 2000).

Indications of Video assisted thoracoscopy are classified into: Diagnostic indications:

- Undiagnosed pleural effusion.
- Indetermined pulmonary nodule.
- Pulmonary infection in the immunosuppressed patient.
- To define cell type in known thoracic malignancy.
- Nodal staging of a primary thoracic tumor.
- Diagnosis of intrathoracic pathology to stage a primary extrathoracic tumor.
- Evaluation of intrapleural infection.

Therapeutic indications:

Lung:

- Management of spontaneous pneumothorax.
- Excision of Bullous cyst.
- Lung volume reduction.
- Persistent parenchymal airleak.
- Excision of benign pulmonary nodule.
- Resection of pulmonary metastases. (in some cases)
- Resection of primary lung tumor (in some cases)

Mediastinum:

- Drainage of pericardial effusion.
- Excision of bronchogenic or pericardial cyst.
- Resection of selected primary mediastinal tumors .
- Esophageal myotomy.
- Evaluation of the diaphragm in penetrating thoracoabdominal injuries and management .
- Facilitation of transhiatal esophagectomy.
- Resection of primary esophageal tumors.
- Thymic resection.
- Ligation of thoracic duct.

Pleura:

- Drainage of multiloculated effusion.
- Drainage of an early empyema.
- Pleurodesis. (Bernard Park et al., 2005)

Other indications of video assisted thoracoscopy:

Esophagus and diaphragm

- Tumor staging or resection.
- Repair of diaphragm.
- Anti reflux operations.

Heart and great vessels

- Pericardectomy.
- Diagnosis of cardiac herniation after pneumonectomy.
- Ligation of patent ductus (infants).

Spine and nerves:

- Dorsal thoracic sympathectomy.
- Splanchnicolysis.
- Drainage of spinal abscess.
- Discectomy.
- Fusion and correction of spinal deformity.

Trauma:

- Assessment of injury.
- Control of hemorrhage.
- Evacuation of clot . (Jay B. Brodsky et al., 2000)

CONTRAINDICATIONS OF VATS

A- Absolute Contraindications:

- 1- Obliterated pleural space or pleural thickening on the preoperative computerized tomography examination (*Valerie J. Halpin et al.*, 2005).
- 2- Inability to tolerate one lung ventilation :

All the operations performed with VATS is done under general anesthesia using double lumen endotracheal tube to allow collapse of the lung on the side of the pathology to allow better visualization and exploration of the entire hemithorax. (*Stoica et al.*, 2000).

3- Patient with bleeding tendencies or under anticoagulant therapy (*Valerie J. Halpin et al.*, 2005).

B-Relative contraindications:

Conditions occurring after chest injury such as hemodynamic instability, shock, major hemorrage and uncontrolled high volume air leakage require thoracotomy for satisfactory outcome (*Valerie J. Halpin et al.*, 2005).

Instrumentation:

Instrumentation for VATS comprises:

- (1) Video equipment.
- (2) Endoscopes thoracoports.
- (3) Staplers.
- (4) Thoracic instruments (e.g., lung clamps and retractors) modified for endoscopic use.
- (5) Various devices for tissue cauterization, including lasers. Because immediate conversion to thoracotomy is occasionally necessary, a basic set of thoracotomy instruments should be an integral part of a VATS instrument tray (*Rusch VW*,1993).

Pathophysiological Considerations In Relation To Thoracic Surgery

Physiological considerations:

There are two phases in pulmonary respiration, ventilatory phase and exchange phase. The ventilatory phase is the air movement between the air and the lung parenchyma. The exchange phase is a phase where carbon dioxide and oxygen are interchanged between alveolar air and pulmonary capillaries through alveolar and capillary membranes. There are three principle factors which affect pulmonary respiration namely ventilation, diffusion and perfusion (*Benumof*, 2005).

VENTILATION:

An adequate minute volume of ventilation may be defined as: the respiratory minute volume which will ensure satisfactory levels of oxygen and carbon dioxide in arterial blood under prevailing conditions of barometric pressure, composition of inspiratory gas, dead space, distribution shunting, diffusion capacity and metabolic activity of the subject. Normal range of arterial PCO2 is 4.8-5.9 KPa(36-44 mm Hg).NormaL arterial Po2 varies widely from 9.3-14.7 Kpa (70-110 mm Hg) and markedly depends on age (*Benumof*, 2005).

DIFFUSION:

Diffusion refers to the passive movement of molecules across a membrane that is governed primarily by concentration gradient. In this sense, carbon dioxide is 20 times more diffusible across human membranes than is oxygen; therefore, carbon dioxide crosses membranes easily. As a result, hypercarbia is never the result of defective diffusion; rather, it is the result of inadequate alveolar ventilation with respect to carbon dioxide production (*M. Christine Stock*, 2006).

PERFUSION:

It is defined as blood flow throughout the lung tissue. As right ventricle contracts, it imparts Kinetic energy to the blood flow in main pulmonary trunk which is dissipated in climbing a steady fall in blood flow per unit alveolar volume with the rib number from the bottom to the apex of the lung when the subject is sitting or upright (standing) (*Benumof*, 2005).

Distribution of Ventilation and Perfusion Distribution of Blood Flow

Blood flow within the lung is mainly gravity dependent. Thus, blood flow depends on the relationship between pulmonary artery pressure (Ppa), alveolar pressure (PA), and pulmonary venous pressure (PpV). The lung divided into three zones.

Zone 1 conditions occur in the most gravity-independent part of the lung above the level where pulmonary artery pressure is equal to alveolar pressure. Because alveolar pressure is approximately equal to atmospheric pressure, pulmonary artery pressure in zone 1 is subatmospheric but necessarily greater than pulmonary venous pressure (PA > Ppa > PpV).

Alveolar pressure that is transmitted to the pulmonary capillaries promotes their collapse, with a consequent theoretical blood flow of zero to this lung region. Thus, zone 1 receives ventilation in the absence of perfusion and creates alveolar dead space ventilation. Normally, zone 1 areas exist only to a limited extent. However, in conditions of decreased pulmonary artery pressure, such as hypovolemic shock, zone 1 enlarges.

Zone 3 occurs in the most gravity-dependent areas of the lung where Ppa > PpV > PA and blood flow is primarily governed by the pulmonary arterial to venous pressure difference. Because gravity also increases pulmonary venous pressure, the pulmonary capillaries become distended. Thus, perfusion in zone 3 is lush, resulting in capillary perfusion in excess of ventilation, or physiologic shunt . (Barash, 2006).