

Faculty of Medicine Ain Shams University Dep. of anesthesiology and intensive Care

Cardiac Dysrrhythmias In Relation To Anesthesia

Essay

Submitted for Fulfillment of Master Degree in Anesthesiology

Presented by

Amr Galal El-Sherbeny El-Sherbeny

M.B.B.C.H

Faculty of Medicine, Cairo University

Under Supervision of

Prof.Dr. Bahira Mohamed Tawfeek Helmy

Professor of Anesthesiology and Intensive Care Faculty of Medicine- Ain Shams University

Dr. Hadeel Magdy Abd El-hamid

Assistant Professor of Anesthesiology and Intensive Care Faculty of Medicine- Ain Shams University

Dr. Ahmed Abd El-Dayem Abd EL-haq

Lecturer of Anesthesiology and Intensive Care Faculty of Medicine- Ain Shams University

> Faculty of Medicine Ain Shams University 2014

سورة البقرة الآية: ٣٢

- First and foremost I thank Allah for everything and especially for my steady steps I have been taking in my career.
- I would like to express my most sincere thanks and deepest gratitude to Prof. Dr. Bahira Mohamed Tawfeek Helmy, Professor of Anethesia and Intensive care, Faculty of Medicine, Ain Shams University. I am deeply affected by her noble character, perfection, care and consideration. I am very much privileged and honored to have her as my supervisor. To her I owe much more than I can express.
- I would like also to express my most sincere thanks and deepest gratitude to Dr. Hadeel Magdy Abd El-Hamid, Assistant professor of Anethesia and Intensive Care, Faculty of Medicine, Ain Shams University, for her remarkable effort, valuable comments and sincere advices.
- Special thanks for Dr. Ahmed Abd El-Dayem Abd El-Haq, Lecturer of Anethesia and Intensive Care, Faculty of Medicine, Ain Shams University for his help and guide to finish this work.
- Last but not least, I want to thank my family, whom without their sincere emotional support, pushing me forward, this work would not have ever been completed.

Contents

S	Subjects Page		
•	List of abbreviations	I	
•	List of tables	V	
•	List of figures	VI	
•	Introduction	1	
•	Aim of the Work	5	
•	Anatomy and physiology of normal cardiac rhy	thm6	
•	Pathophysiology of Cardiac dysrrhythmias	22	
•	Perioperative Management of cardiac dysrrhyth	mias61	
•	Summary	168	
•	References	171	
•	Arabic summary		

Lists of Abbreviations

AFFIRM: Association For Federal Information

Resources Management

Ach : Acetylcholine

AECG: Ambulatory External Electrocardiogram

AF : Atrial fibrillation

AHA : American heart association

ALS : Advanced Life Support

AMI : Acute myocardial infarction

AP : Action potential

APB : Atrial premature beat

APD : Action potential duration

ATP : Adenosine triphosphate

AV : Atrioventricular

AVN : Atrioventricular node

AVNRT: AV Nodal Reentrant Tachycardia

Bpm : Beat per minute

C:V : Compression Ventilation ratio

Ca²⁺ : Calcium

CABG: Coronary artery bypass grafting

CAD : Coronary artery disease

CBs : Calcium channel Blockers

CC : Cardiovascular Collapse

CHF : Congestive heart failure

CL : Chloride

CNS : Central nervous system

CPAP : Continous Positive Airway Pressure

CPR : cardiopulmonary Resuscitation

DADs : Delayed afterdepolarizations

DC : Direct current

EAD : Early afterdepolarization

ECG: Electrocardiogram

EPS : Electrophysiological study

ESWL : Extra-corporeal shock wave lithotripsy

ETT : Endotracheal tube

FDA : Food and Drug Administration

GIA : Guide wire Induced Arrhythmia

H.B: Heart block

HR: Heart rate

HRS: HeartRhythmSociety

i or I : Electrical currents

I_{CaL} : L-Type Ca Channels/ Current

I_{CaT} : T-type Ca Channels /Current

ICD : Implantable Cardioverter-Defibrillator

 I_f : Funny current

IHD : Ischemic heart disease

IJV : Internal jugular vein

I_k: Delayed Rectifier Potassium Current

I_{KI} : Background Potassium Current

 $\mathbf{I}_{\mathbf{kr}}$: Rapid Potassium channels/current

 I_{ks} : Slow potassium channels/current

I_{kur} : Ultra-rapid potassium channels/current

I_{Na} : Sodium current

I_{TI} : Transient Inward Current

I_{to}: Transient outward current

IV : IntraVenous

K⁺ : Potassium

LAFB: Left Anterior Fascicular Block

LBBB: Left bundle branch block

LMA : Laryngeal mask airway

LPFB: Left posterior fasicular block

LQT : Long QT interval

LQTS : Long QT Syndrome

LV : Left ventricle

MAT : Multifocal Atrial Tachycardia

MI : Myocardial infarction

 N_20 : Nitrous oxide

Na⁺ : Sodium

NCX : Sodium Calcium Exchanger

NE : Epinephrine

OR : Operation Room

OSA : Obstructive sleep apnea

PAC : Premature atrial contraction

PaCo₂ : Co₂ tension

PACs: Premature atrial complexes

PCS: Peripheral conduction system

PEA : Pulseless electrical activity

PEM : Protein energy malnutrition

PSVT: Paroxysmal supraventricular tachycardia

PVCs: Premature Ventricular complexes

RBBB : Right bundle branch block

RF : Radiofrequency

RMP : Resting membrane potential

ROSC: Return of spontaneous circulation

RV : Right ventricle

SA : Sinoatrial

SAN : Sinoatrial node

SCN5A : sodium channel, voltage-gated, type V,

alpha subunit

SVR : systemic vascular resistance

TdP: Torsade de pointes

TEE: Trans-Esophageal Echocardiography

VF : Ventricular fibrillation

VT : Ventricular tachycardia

WPW: Wolf Parkinson White syndrome

List of Tables

Table	Contents	Page
1	Intracellular and extracellular ion concentrations	9
	in cardiac muscle	
2	Phases of cardiac action potential	3
3	Classification of antiarrhythmic drugs	109
4	Classification of pacemakers	146

List of Figures

Figure	Comment	Page
1	Anatomy of cardiac conduction system	7
2	Electrical activity in the myocardium	4
3	Membrane currents that generate a normal action potential	12
4	Difference between action potential of sinoatrial node fiber and ventricular muscle fiber	14
5	Effect of acetylcholine and norepinephrine on SA node action potentials	17
6	A typical one-cycle ECG tracing	20
7	Early after depolarization	25
8	Delayed after depolarization	26
9	Reentery pathways	8
10	Sinus tachycardia	31
11	Sinus bradycardia	32
12	Sinus arrhythmia	33
13	Sinus arrest or pause	34
14	Paroxysmal supraventricular tachycardia	35
15	Premature atrial complexes	36
16	Premature junctional complexes	37
17	Atrial Fibrillation	38
18	Atrial Flutter	39
19	Multifocal Atrial Tachycardia	40
20	Junctional Rhythm	40
21	Premature ventricular complexes	42

List of Figures (cont.)

Figure	Comment	Page
22	Ventricular tachycardia	45
23	Ventricular Fibrillation	46
24	Sinoatrial block	47
25	First Degree AV block	48
26	Mobitz Type I(2 nd Degree AV block)	49
27	Mobitz Type II(2 nd Degree AV block)	49
28	3 rd Degree AV block	50
29	Left Bundle Branch Block	51
30	Right Bundle Branch Block	51
31	Left Anterior Fascicular Block	52
32	Wolf Parkinson White syndrome	54
33	Type I Brugada syndrome	57
34	Types of Brugada syndrome	57
35	Torsade de pointes	60
36	Holter monitoring	74
37	Event monitoring	75
38	Loop monitoring	76
39	Ambulatory cardiovascular telemetry	78
40	Three-Electrode system	81
41	Modified bipolar standard limb lead system	84
42	Esophageal probe	85
43	Schematic diagram of the effects of Class IA agents	110

Figure	Comment	Page
44	Schematic diagram of the effects of Class IB agents	117
45	Schematic diagram of the effects of Class IC agents	121
46	Schematic diagram of the effects of class III agents	127
47	Schematic diagram of the effects of Class IV agents	135
48	Universal ALS Algorithm	163

Introduction & Aim of work

Introduction

Life threatening cardiovascular events under anesthesia is uncommon. However, adverse cardiovascular events occurring during and after the emergence of anesthesia occur more frequently. Although the incidence is higher during cardiac surgery, intra-operative dysrrhythmias affect up to 29% of patients undergoing non-cardiac surgery. Relatively minor fluctuations in cardiovascular and hemodynamic parameters due to Arrhythmias can have significant long-term implications for example, post-operative atrial fibrillation is associated with a 2-3 fold increase in stroke risk, as well as a higher incidence of myocardial infarction, congestive heart failure, ventricular dysrrhythmias and renal failure (*Valchanov et al.*, 2011).

The incidence of intra-operative cardiac dysrrhythmias depends on the definition (benign versus life threatening), patient characteristics and the type of surgery (frequent incidence during cardiothoracic surgery (*Miller and Pardo*, 2011).

Cardiac dysrrhythmias are an important cause of complications throughout the perioperative period. Although our understanding of arrhythmias has increased considerably in recent years, they remain a source of concern for anesthesiologist (*Garcia*, 2006).

In the normal human heart, each beat originates in the SA node (specialized tissue in the right atrium) resulting in a regular normal sinus rhythm (*Ganong*, 2005).

Arrhythmia or Dysrrhythmia is defined as "Abnormality of cardiac rate, rhythm or conduction which can be either lethal (sudden cardiac death) or symptomatic (syncope, near syncope, dizziness or palpitations) or asymptomatic". Immediate diagnosis and intervention by the anesthesiologist will prevent degeneration of an arrhythmia into a life-threatening event (*Dua and Kumra*, 2007).

Ion channels provide the molecular basis for cardiac electrical activity. These channels have specific ion selectively and are responsible for the precise and timely regulation of the passage of charged ions across the cell membrane in cardiac cells. Impairment in the flow of these ions predisposes to cardiac arrhythmias (*Farwell and Gollob*, 2007).

The ion channels are classified into three classes (based on the cation they conduct) sodium, calcium and potassium channels (*Thompson and Balser*, 2004).

Arrhythmias can be classified by the heart rate into tachyarrhythmias and bradyarrhythmias. Arrhythmias can also be classified based on where they arise from as either ventricular (within the ventricles) or supraventricular (anywhere above the