Endotoxemia in hemodialysis patients with chronic HCV infection

Thesis

Submitted for partial fulfillment of Master degree in internal Medicine

By

Amira Mohamed Mahmoud Abd El Ghani

M.B,B.ch Ain shams university

Under supervision of

Prof. Dr. Mohamed Ali Ibrahim

Professor of Internal Medicine and Nephrology

Head of nephrology department

Faculty of medicine Ain shams university

Dr. Ahmed Shaban Serag El-Deen

Lecturer of Internal Medicine & Nephrology Faculty of Medicine_ Ain Shams University

Dr. Doaa Mostafa El-Zoghby

Lecturer of Clinical and chemical Chemistry
Faculty of Medicine_ Ain Shams University

Faculty of Medicine
Ain Shams University
2015

سورة البقرة الآية: ٣٢

Acknowledgement

First of all, all gratitude is due to **God** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof Mohamed Ali Ibrahim,** Professor of Internal Medicine, faculty of medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I owe much to **Dr. Ahmed Shaaban Serageldin**, Lecturer of Internal Medicine faculty of medicine, Ain Shams University, for his continues help, valuable suggestions and patience throughout the whole work.

I owe much to **Dr. Doaa Mostafa El-zoghby**, Lecturer of Clinical and chemical Chemistry faculty of medicine, Ain Shams University, for her continues help, valuable suggestions and patience throughout the whole work.

I owe much to **Dr. Maha El-beheiry**, Lecturer of internal Medicine faculty of medicine, Ain Shams University, for her continues help, valuable suggestions and patience throughout the whole work.

Last but not least, I dedicate this work to my family and friends whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Contents

List of Abbreviations	II
List of Tables	VII
List of Figures& Gurves	X
Introduction	1
Flim of the Work	4
Review of Literature	5
Patients and Methods	73
Results	79
Discussion	99
Summary	107
Conclusion & Recommendations	110
Master Sheet	111
References	117
Frabic Summary	time time

List of Abbreviations

[Ca2+]i: cytosolic-free Ca2+ co

5'NCR: 5'non-coding region

AA: arachidonic acid

AAMI: Association for Advancement of Medical

Instrumentation

AGEs: advanced glycation end-products

ALT: alanine transaminase

AMPs: Antimicrobial peptides

ANSI: American National Standards Institute

AVF: arteriovenouse fistula

BSP: brain specific proteins

CD14: cluster of differentiation

CDC's: Centers for Disease Control and Prevention

CKD chronic kidney disease

CPFA: Coupled plasma filtration adsorption

cPLA2 cytosolic phospholipase A2;

CRP: C reactive protein

CRRT: continuous renal replacement therapy

CVD: cardiovascular disease

DNA: Deoxyribonucleic acid

E1 and E2:envelope proteins E1 and E2

EBPG: European Best Practice guidelines

EE: Enterogenous endotoxemia

EEG: electroencephalographic

EIA: enzyme immunoassay

ELISA: Enzyme linked immunosorbent assay

EPO: Erythropoietin

ESRD: end-stage renal disease

ESRF: end-stage renal failure

ET: endotoxin

EU: Endotoxin unit

FAO: Food and Agriculture Organization

GLP-2: Glucagon-like peptide 2

GPRs: G protein coupled receptors

HCC: hepatocellular carcinoma

HCO: high cut-off

HD: hemodialysis

HDF: hemodiafiltration

HMGB-1: high-mobility group box 1 protein

HsCRP: High sensitivity C reactive protein

IE: intestinal endotoxin

IFNช: Interferon ช

IL-12: Interleukin 12

IL-18: Interleukin 18

IL-1β: Interleukin 1 β

IL-6:Interleukin 6

iNOS: inducible nitric oxide; synthase;

INR: international normalised ratio

IVC: Intravenous Catheter

KDIGO: Kidney disease improving global outcomes

LBP: lipopolysaccharide-binding protein

LDL: Low density lipoprotein

LPS: lipopolysaccharide

LPS-LBP complex: lipopolysaccharide-lipopolysaccharide-binding protein complex

LV: Left ventricle

MAPK: mitogen-activated protein kinase

mCD14: a membrane bound cluster of differentiation

MCP-1: monocyte chemoattractant protein-1

MIA: malnutrition, inflammation, and atherosclerosis syndrome.

NANBH: non-A, non-B hepatits

NAT: nucleic acid amplification technology

NF-κB: Nuclear factor kappa B

NLRs: nucleotide-binding oligomerization domain

receptors

NO: nitric oxide;

NUF: new single-use ultrafilter

ODN: oligodeoxynucleotides

ONNO: peroxynitrite;

p7, NS2-5: protein seven non- structural 2-5

PCR: polymerase chain reaction

PEPA: polyester-polymer alloy

PMMA: poly methyl methacrylate

PMX: Polymyxin

PPAR gamma: peroxisomal proliferator activated receptor

gamma

RIBA: recombinant immunoblotting assay.

RNA: Ribonucleic acid

RO: Reverse osmosis

ROS: reactive oxygen species

RUF: Reference ultrafilter

sCD14: soluble cluster of differentiation

SCFAs: short chain fatty acids

SIRS: Systemic Inflammatory Response Syndrome

TLR: Toll like receptors

TNF- α : Tumor necrosis factor α

WHO: World Health Organization

β2M: β2-microglobulin

List of tables

Table	Title	Page
1	Assigning a Child-Pugh score	40
2	Percentage survival in cirrhotic liver disease	41
3	Treatment for HCV based on CKD stage according to KDIGO Clinical Practice Guidelines	45
4	Description of demographic data of patients.	79
5	Description of clinical data of patients	80
5a	Description of clinical data of patients	81
6	Description of lab results	82
7	Endotoxin level among patients	83
8	Comparison between study groups regarding Demographic data	83
9a	Comparison between study groups regarding clinical data	84
9b	Comparison between study groups regarding clinical data	85
10	Comparison between study groups regarding endotoxin level	86

11	Comparison between study groups regarding lab results	87
12	Relation between endotoxin predialysis and demographic data	89
12b	relation between vascular access and endotoxin level	90
13	Relation between endotoxin predialysis and lab results	91
14	Relation between endotoxin postdialysis and demographic data	92
15	Relation between endotoxin postdialysis and HCV status	93
16	Relation between endotoxin postdialysis and lab results	93
17	Relation between endotoxin delta change and both child score and HCV status	94
18	Relation between endotoxin delta change and lab results	95
19	Relation between endotoxin delta change and demographic data	95
20	Relation between endotoxin delta change and HCV status	96
21a	relation between sonar results and	96

	endotoxin predialysis in 34 patients	
21b	relation between sonar results and endotoxin post.	97
21c	relation between sonar results and endotoxin delta change	97
22	Regression analysis for factors affecting endotoxin predialysis level	98
23	Regression analysis for factors affecting endotoxin post level	98

List of Figures & curves

Fig.	Title	Page
1	Hypothetical schematic of endotoxin- induced oxidative stress in liver	42
2	mechanisms in the development of bacterial infections, sepsis, and multiorgan failure in cirrhosis	44
3	Probiotics benefit the host by communicating with a variety of cell types	57
4	Flow charts of on-line dialysis fluid preparation	68
5	Retention of P. aeruginosa LPS assessed by determining LPS concentrations (EU/ml) with the LAL test	69
6	the coupled plasma filtration adsorption (CPFA) circuit	70
7	distribution of patients according to endotoxin delta change	94

INTRODUCTION

Introduction

Bacterial endotoxin is a lipopolysaccharide (LPS) and the major glycolipid component of the outer membrane of gramnegative bacteria, which comprise 70% of the total bacteria in the healthy human gut. Exposure to endotoxin results in release of a wide variety of proinflammatory cytokines and binding via CD14 to systemic immune competent cells. (Christopher W et al.,2010).

LPS molecules can form aggregates which are too large to pass through dialysis membranes. It has been shown that components of lipopolysaccharide (lipid A) are able to pass through dialysis membranes, can elicit a pyrogenic response, and contribute to long-term morbidity and inflammation (*Raj et al.*, 2009).

Endotoxin results in a broad range of negative cardiovascular effects including peripheral vasodilation and reduction in cardiac contractile performance. patients on long-term maintenance hemodialysis have evidence of mucosal ischemia and ultrafiltration causes a reduction in splanchnic blood volume despite preserved blood pressure. Mesenteric ischemia results in disrupted gut mucosal structure and function, with increased gut permeability .also Endotoxin contamination of dialysis water has