Screening for Pulmonary Tuberculosis among Elderly Patients in Sohag Chest Hospital

Chesis

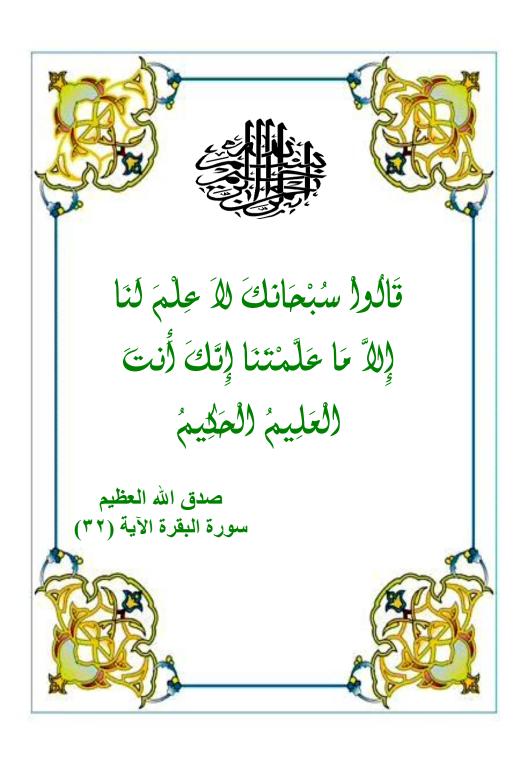
Submitted for partial fulfillment of master degree in Chest Diseases and Tuberculosis

By

Ereny Tharwat Kameel

M.B.B.CH

Under Supervision of


Prof. Dr./ Mohamed Farrag

Professor of Chest Diseases Faculty of Medicine – Ain Shams University

Dr./ Haytham Samy Diab

Lecturer of Chest Diseases Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2014

Acknowledgment

First and foremost, praise and thanks must be to **ALLAH** Who guides me throughout life.

I would like to express my deepest gratitude and thanks to **Prof. Dr. Mohamed Farrag**, Professor of chest diseases, Faculty of Medicine, Ain Shams University, for his continuous encouragement and great support throughout the work. It was a great honor to work under his meticulous supervision.

Also I am really deeply grateful to **Dr. Haytham Samy Diab,** Lecture of chest diseases,
Faculty of Medicine, Ain Shams University, for his
great help, valuable time, careful supervision and
continuous advices and his efforts that make this
work comes to light.

I am really thankful to everyone who took part in exhibiting this work to light.

Ereny Charwat Kameel

Table of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	vi
Abstract	vii
Introduction	1
Aim of the Work	3
Review of Literature	
Tuberculosis	4
Epidemiology of Tuberculosis	6
Immunology of Tuberculosis	15
Tuberculosis Transmission and Control	27
Diagnosis of Tuberculosis Infection	38
Diagnosis of Latent Tuberculosis Infection	57
Subjects and Methods	83
Results	86
Discussion	109
Summary and Conclusion	116
Recommendations	120
References	121
Arabic Summary	

List of Abbreviations

Abbrev.	Full term
APCs	AntigenPresenting Cells
ADA	Adenosine De Aminase
AFB	Acid Fast Bacilli
AIDS	Acquired Immunodeficiency Syndrome
ATT	Anti Tuberculous Therapy
BCG	Bacille Calmette Guerin
CD	Cluster of differentiation
CDC	Centers for Disease Control and prevention
CR	Complement receptors
CT/PET	ComputedTomography/PositronEmission Tomography
DCs	Dendritic Cells
DOTs	Directly Observed Treatment Short Course
DTH	Delayed type hypersensitivity reaction
HCWs	Health Care Workers
HEPA	High Efficiency Particulate Air
HIV	Human Immunodeficiency Virus
IFN-γ	Interferon Gamma
IGRAs	Interferon Gamma Release Assays
IL	InterLeukin
LAM	lipoglycan lipoarabinoMannan
LFTs	liver Function Tests
LTBI	latent Tuberculosis Infection
M. TB	Myobacterial Tuberculosis
MDR-TB	MultiDrug-Resistant TB

List of Abbreviations (Cont...)

Abbrev.	Full term
MHC	Major Histocompatibility Complex Class
MOHP	Ministry of Health and Population
NAA	Nucleic acid amplification
NK CELLS	Natural Killer Cells
NPIR	negative pressure isolation rooms
NTM	NonTuberculous Mycobacteria
NTP	National Tuberculosis Control Programme
OT	Old tuberculin
PBMCs	Peripheral Blood Mononuclear Cells
PPD	Purified Protein Derivative
QFT-GIT	QuantiFERON-TB Gold In-Tube
SCC	Standardized short- Course Chemotherapy
TH1	T helper 1 cell
TH2	T helper 2 cell
TLR-2	Toll-Like Receptor-2
TNF a	Tumor necrosis factor α
TST	Tuberculin Skin Testing

List of Tables

Eable No	v. Eitle	Page No
Table (1):	Components, functions and ageinnate immune system	•
Table (2):	Interpretation of TST	63
Table (3):	A comparison of tuberculin skin tes interferon-gamma release assays	
Table (4):	Distribution of studied cases as patient sex	0
Table (5):	The mean age of patients in the s	
Table (6):	Distribution of studied cases as patient occupation	
Table (7):	Distribution of studied cases as smoking	•
Table (8):	Distribution of studied cases as regard presenting symptoms	
Table (9):	Distribution of studied cases as type of co –morbid conditions	•
Table (10):	The Duration of onset of propulmonary tuberculosis in years studied group.	in the
Table (11):	Distribution of studied cases as diameter of induration in (Tuberculi Test)TST	n Skin
Table (12):	Distribution of studied cases as active pulmonary tuberculous (pesputum)	ositive

List of Tables (Cont...)

Eable No	v. Eitle	Page No.
Table (13):	Distribution of studied cases as a active pulmonary tuberculous tuberculin test results	and
Table (14):	Distribution of studied cases as regardiological evidence of tubero whether absent, active or inactive disease	culosis
Table (15):	Distribution of radiological findings and active pulmonary tuberculosis a different lung zones	mong
Table (16):	TST positive results and smoking his	tory98
Table (17):	TST positive results in patients wit morbid conditions	
Table (18):	TST positive results among patients co-morbid conditions and COPD	
Table (19):	TST positive results in patients a patients with co-morbid conditions diabetes mellitus	s and
Table (20):	TST positive results and particle presenting symptoms whether suggestive of tuberculosis	estive
Table (21):	TST and chest X-ray positive result sputum results for acid fast bacilli	
Table (22):	TST positive results and raised 1st hi	
Table (23):	TST positive results and x-ray finding	gs105
Table (24):	TST negative results and x-ray findings	

List of Tables (cont...)

Cable No	v. Eitle	Page	No.
Table (25):	Comparison between TST(Tube Skin Test) positive and TST (Tube Skin Test) negative cases according ray results	rculin to X-	107
Table (26):	Comparison between TST (Tube Skin Test) positive and TST (Tube Skin Test) negative cases according Comorbid conditions	rculin ng to	108

List of Figures

Figure No	. Eitle	Page No.
Figure (1):	Role of immune cells in TB infection	n22
Figure (2):	Distribution of studied cases as patient's sex	•
Figure (3):	The mean age of patients in the s group	
Figure (4):	Distribution of studied cases as occupation	
Figure (5):	Distribution of studied cases as smoking	_
Figure (6):	Distribution of studied cases as rethe presenting symptoms	•
Figure (7):	Distribution of studied cases as type of co –morbid conditions	U
Figure (8):	The Duration of onset of propulmonary tuberculosis in years studied group	in the
Figure (9): D	istribution of studied cases as regard di of induration in (Tuberculin Skin Test)	
Figure (10):	Distribution of studied cases as active pulmonary tuberculous infect	C
Figure (11):	Distribution of studied cases as active pulmonary tuberculous tuberculin test results	and
Figure (12):	Distribution of studied cases as reg radiological evidence of tubero whether absent, active or inactive dis	culosis

List of Figures (Cont...)

Figure No	. Eitle	Page No.
Figure (13):	Distribution of radiological findings and active pulmonary tuberculosis a different lung zones	mong
Figure (14):	TST positive results and smoking his	tory98
Figure (15):	TST positive results in patients with morbid conditions	
Figure (16):	TST positive results among patients co-morbid conditions and COPD	
Figure (17):	Relation between TST positive r with co-morbid conditions and diamellitus	abetes
Figure (18):	TST positive results and paper presenting symptoms whether sugg or not suggestive of tuberculosis	estive
Figure (19):	TST positive results and sputum r for acid fast bacilli	
Figure (20):	TST positive results and raised 1st havalue	
Figure (21):	TST positive results and x-ray finding	gs105
Figure (22):	TST negative results and x-ray findir	ngs106
Figure (23):	Comparison between TST positive TST negative cases according to results	X-ray
Figure (24):	Comparison between TST positive TST negative cases according Comorbid conditionss	g to

Introduction

berculosis (TB) remains a major global health problem. It causes ill-health among millions of people each year and ranks as the second leading cause of death from an infectious disease worldwide, after the human immunodeficiency virus (HIV). In 2011, there were an estimated 8.7 million incident cases of TB (range, 8.3 million-9.0 million) globally, equivalent to 125 cases per 100,000 population. Of the 8.7 million incident cases, an estimated 0.5 million were children and 2.9 million (range, 2.6-3.2 million) occurred among women (*WHO*, 2012).

Tuberculin skin testing (TST) is a broth culture filtrate of tubercle bacilli, was first prepared by Robert Koch in 1880 and wrongly promoted as a cure for tuberculosis. Subcutaneous injection of tuberculin into patients with tuberculosis resulted in severe systemic upset whereas non-tuberculous individuals showed few or no symptoms (*Koch*, 1890).

Tuberculin skin testing (TST) has a more limited role to play in the diagnosis of active tuberculosis than it does in identifying patients with latent tuberculosis infection, and this is particularly true in older individuals. In tuberculosis patients in general, TST can be negative about 20% of the time in the setting of active disease, and the skin test will be negative even more often in older patients. The higher frequency of negative TST in older patients probably reflects a higher prevalence of energy in this population due to impaired T-cell function (*Leduc*, *et al.*, *1997*).

That is can be explained by, in elderly individuals several changes occur in the immune system for example, the number of circulating lymphocytes decreases by approximately 15%, primarily due to decreased number of T cells. Fewer interleukin-2 receptors in the lymphocyte cell membrane and decreased levels of adenosine triphosphate in the lymphocyte cytoplasm result in decreased lymphocyte proliferation in response to antigen stimulation. The absence of a reaction to TST in any individual does not rule out TB disease or infection; this is particularly true among the elderly so negative results cannot rule out the diagnosis of active tuberculosis in elderly patients (*Gelato*, 1996).

Older patients with pulmonary tuberculosis may have relatively few symptoms, so clinicians need to have a high index of suspicion in order to make a diagnosis. So after a history and physical examination are completed, the first diagnostic examination-to be performed will usually be a chest radiograph. The radiology of tuberculosis in older persons has been well-described. Certainly, upper lobe, cavitary disease is often seen in this age group Thus, a negative TST should not be taken as strong evidence against the diagnosis of active tuberculosis in an older patient if epidemiologic, clinical and radiographic features support the diagnosis (*Perez Guzman et al.*, 1999).

Aim of the Work

o screen for pulmonary tuberculosis among elderly patients above 65 years in Sohag chest Hospital

Tuberculosis

Historical Overview

Consumption, phthisis, Scrofula, Pott's disease, and the White Plague are all terms used to refer to tuberculosis throughout history.

Signs of the disease have been found in Egyptian mummies dated between 3000 and 2400 BC. It appears likely that Akhenaton and his wife Nefertiti both died from tuberculosis, and evidence indicates that hospitals for tuberculosis existed in Egypt as early as 1500 BCE.

In 460 BC, Hippocrates identified phthisis (Greek word) meaning "consumption" as the most widespread disease of the times and notes that is almost always fatal.

In 1854 AC, Brehmer built the first sanatorium in Gorbersdorf, Poland, to provide two main functions: guarantee isolation of the sick from the general population and assist the healing process through enforced rest and proper diet.

In 1882, Koch identified the tubercle bacillus and convicts it of causing tuberculosis.

In 1900, Calmette and Guerin discover the vaccine (BCG) that is obtained from attenuation of a strain of Mycobacterium bovis.