

شبكة المعلومـــات الجامعية التوثيق الالكتروني والميكروفيا.

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

40-20 في درجة حرارة من 15-20 منوية ورطوبة نسبية من

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

BILCEQ

EL-Mansoura University Faculty of Engineering Structural Eng. Dept.

Employment of Polymer Concrete In Perforated Composite Section for Beams with Eccentric Holes and calculation of plastic behavior for this type of beams

BY

Ayman Yehia Kamel

B.Sc. Civil Engineering, Mansoura University, 1986

A Thesis

Submitted In Partial Fulfillment for
The requirement of the degree of master of science
In
Structural Engineering

Supervisors

Prof. Dr.

Youssef I. Agag Professor of Structural Eng. Faculty of Engineering

EL- Mansoura University

Prof. Dr.

Ahmed II. Abd El Rehem

Professor and Head of Str.Eng.Dept. Faculty of Engineering EL- Mansoura University

Assoc. Prof. Dr.

Ahmed El-Said Badr

Assoc. Professor of Str. Eng. Faculty of Engineering EL- Mansoura University

3 | 3889 | 17

Statement

Thesis title : Employment of Polymer Concrete In

Perforated Composite Section for Beams with Eccentric Holes and calculation of plastic behavior for this type of beams.

Researcher Name : Ayman Yehia Kamel

Date of birth : 20-10-1964

Degrees : B.Sc. in civil engineering, May 1986,

with general grade very good with

honor degree.

Place of Presentation: El-Mansoura University

Supervisors

Name	Position	Signature
1- Prof. Dr. Eng. Youssef I. Agag	Professor of structural Eng. Faculty of Engineering El-Mansoura University	Many Agay
2- Prof. Dr. Eng. Ahmed H. Abd El Rehem	Professor and Head of Str.Eng.Dept. Faculty of Engineering El-Mansoura University	Alas
3- Assoc. Prof. Dr. Eng. Ahmed El- Said Badr	Assoc. Professor of Str. Eng.Faculty of Engineering EL- Mansoura University	almedBade

Examination Committee

Researcher Name

: Ayman Yehia Kamel

Thesis Title

: Employment of Polymer Concrete In Perforated Composite Section for Beams with Eccentric Holes and calculation of plastic behavior for this type of beams

Examination Committee

Name	Position
1- Prof. Dr. Eng. Adel Helmy Salem	Professor of structural Eng. Dean of Faculty of Engineerig Ain - Shams University (former)
2- Prof. Dr. Eng. Mahmoud I. El-Banna	Professor of structural Eng. Faculty of Engineerig Ain - Shams University
3- Prof. Dr. Eng. Youssef I. Agag	Professor of structural Eng. Faculty of Engineering El-Mansoura University
3- Assoc. Prof. Dr. Eng. Ahmed El- Said Badr	Assoc. Professor of structural Eng. Faculty of Engineering El-Mansoura University

Examination Date

14 / 1/2 / 1996

Thesis Grade

Signatures

Name	Signature
 Prof. Dr. Adel Helmy Salem Prof. Dr. Mahmoud I. El-Banna Prof. Dr. Youssef I. Agag Assoc. Prof. Dr. Ahmed El- Said Badr 	Harry Agag

Signature

Dean of Faculty of Engineering

Acknowledgment

I'm extremely grateful to my Professor Dr. Ahmed El- Said Badr associate professor of structural Engineering, El Mansoura University for his supervision, advice, valuable guidance, numerous suggestions and stimulating discussions throughout this work and during the preparation of this thesis and for his encouragement to start and to continue this work

I would like to express my sincere thanks to professor **Dr. Ahmed H. Abd El Rehem** Professor and Head of structural Engineering Department El-Mansoura University for his support and his kind advises.

I feel much honored to express my deep gratitude to professor **Dr. Youssef I. Agag** Professor of structural Eng., El-Mansoura University for his encouragement and support.

I would like to express my deep gratitude to all my colleagues in Mansoura University and in EGYCO company .

Finally, I would like to record with deep appreciation the patience, understanding and endurance received from my direct and extended family. The marvelous support received from my wife "Ghada", during the preparation of this thesis is gratefully acknowledged.

ABSTRACT

The main objective of this thesis is devoted to study the plastic behavior of composite beams with polymer concrete slab and multiple eccentric web openings. The opening locations were varied over the beam's length to investigate the different moment-shear ratios applied to the center-line of the critical opening. The analytical model of such beams include the study of the different hole failure mechanism that the beam may be subjected to such as, single hole failure, double hole failure and global hole failure. Also, the stability of web-post between adjacent holes is studied to avoid the failure due to the interaction between openings. The analysis is based on the conservatively assumed stress distribution at the hole boundaries—and satisfies equilibrium and yield condition. The analysis is limited in scope to rectangular openings and includes the contribution of the polymer concrete slab to shear strength, as well as flexural strength.

In general, the obtained results from the analysis are presented in a series of interaction diagrams to explore the effects of opening dimensions, eccentricity, spacing between web openings and the concrete slab parameters on the strength of the composite beam.

Finally, Comparisons are made between the obtained results from the analysis and those previously obtained either experimentally or theoretically, to verify the general accuracy of the analysis. In general, the analysis provides realistic, and generally conservative predictions of the strength for the previously tested beams.

TABLE OF CONTENTS

Subject	Page
NOTATION	\mathbf{v}
CHAPTER 1 INTRODUCTION	1
1-1 Preamble	1
1-2 General Design Concepts	1
1-3 Scope and Objectives	3
1-4 Thesis Contents	4
CHAPTER 2 LITERATURE REVIEW	
2-1 Introduction	7
2-2 Prediction of Internal Stresses in Perforated	8
Beams	
2-2-1 prediction of internal stresses in steel beams	8
2-2-2 prediction of internal stresses in perforated	15
composite beams	
2-3 A Short Review for the Distribution of Shear	19
Force at Eccentric Web Opening	
2-4 Review of Previous Researches on Plastic Analysi	S
of Perforated Composite Beams	21
2-4-1 Tood and Cooper analysis	21
2-4-2 Clawson and Darwin analysis	22
2-4-3 Darwin and Donahey analysis	24
2-5 A Short Review for Polymer Concrete	26
2-5-1 polymer cement concrete PCC	27

Subject	
2-5-2 polymer impregnated concrete PIC	29
2-5-3 polymer concrete PC	32
2-5-4 general remarks on polymer concrete	33
CHAPTER 3 PLASTIC ANALYSIS OF COMPOSITE BEAMS	WITH
POLYMER CONCRETE AND ECCENTRIC HOLES	
3-1 Introduction	35
3-2 Analysis of Composite Beams with Polymer	
Concrete and Single hole Failure	36
3-2-1 forces acting at opening	36
3-2-2 failure modes	38
3-2-2-1 failure under pure moment	38
3-2-2-2 failure under combined moment and shear	39
3-2-3 stress distributions at critical sections	40
3-2-3-1 stress distribution for bottom tee	40
3-2-3-2 stress distribution for top tee	42
3-2-4 yield condition	43
3-2-5 analysis of composite beams with	
single hole failure	44
3-2-5-1 equilibrium equations for bottom tee	45
3-2-5-2 equilibrium equations for top tee	46
3-2-6 interaction diagrams	48
3-2-6-1 maximum shear capacity for bottom and top tees	48
3-2-6-2 case of combined moment and shear	49
3-2-6-3 case of pure moment	51

		Subject	Page
	3-3	Analysis of Composite Beams with Polymer	
		Concrete and Double Hole Failure	53
	3-3-1	forces acting at openings	53
	3-3-2	failure modes	55
	3-3-2-1	double hole failure under pure moment	55
	3-3-2-2	double hole failure under combined	
		moment and shear	56
	3-3-3 a	nalysis of composite beams with	
		double holes failure	57
	3-3-3-1	maximum shear strength for bottom and top tees	58
	3-3-3-2	case of combined moment and shear	61
	3-4	Analysis of Composite Beams with	
		Polymer Concrete and Global Holes Failure	63
	3-4-1 f	orces acting at opening	64
	3-4-2 a	nalysis of composite beams with	
		global holes failure	65
	3-4-2-1	maximum shear strength for bottom and top tees	65
	3-4-2-2	case of combined moment and shear case	68
	3-5 II	nstability of Web-Post	70
	3-5-1 g	eneral	70
	3-5-2 n	ninimum width (Cpmin) of web posts	
		between openings	70
СНАРТ	ER 4	APPLICATION	
	4-1 I	ntroduction	75
	4-2 I	nteraction Diagrams for Final Results	75

Subject		Page
4-3	Comparison of Results	108
4-3-1	comparison with the experimental results	
	of Darwin [9]	108
4-3-1-1	Darwin's large steel sections	110
4-3-1-2	Darwin's small steel sections	113
4-3-2	comparison with the experimental results	
	of Granade	116
CHAPTER 5	CONCLUSIONS and RECOMMENDATIONS	
5-1	Introduction	130
5-2	Conclusions	131
5-3	Recommendations for Design of Perforated	
	Composite Beams	133
5-4	Recommendations for Future Researches	135
REFERENCES		136
APPENDIX I	COMPUTER PROGRAMS	141

NOTATION

The Following symbols and abbreviations are used in the thesis

```
a : half length of opening;
```

b_f: width of flange

beff : Effective width of concrete slab;

C :depth to neutral axis from top of concrete slab;

c_p: width of web post;

d : depth of steel section;

e : opening eccentricity;

 F_{yf} : flange yield stress;

F_{vw}: web yield stress;

F_b: normal stress, bottom tee section;

F_t: normal stress, top tee section;

F : reduced concrete compresive strength;

F_c: uniaxial concrete compresive strength;

h : half height of hole;

H_p : force at the end of web post;

K_{1b} : stress reversal coefficient, section 1 (bottom);

K_{2b} : stress reversal coefficient, section 2 (bottom);

K_{1t} : stress reversal coefficient, section 1 (top);

K_{2t} : stress reversal coefficient, section 2 (top);

M : moment at center line of opening;

M_{pst} : post plastic moment;

M_{pg}: plastic moment capacity for uncut section;

m_{t1} : secondary moment, section 1 (top);

 m_{t2} : secondary moment, section 2 (top);