Myocardial preservation using antegrade versus combined antegrade and retrograde cardioplegia in patients suffering from left main coronary artery disease undergoing coronary artery bypass grafting (CABG).

Submitted for Partial Fulfillment of MD Degree In Cardiothoracic Surgery

BY
Ihab Omar Kamel
M.B.B.Ch
M.Sc.General Surgery

Under Supervision of

Prof. Dr. Yahia Balbaa Anwar Balbaa

Professor of Cardiothoracic Surgery Cairo University

Prof. Dr. Magued Abdelmessih Zikri

Professor of Cardiothoracic Surgery Cairo University

Prof. Dr. Mostafa El Sabban

Professor of Cardiothoracic Surgery Cairo University

> Faculty of Medicine Cairo University 2014

بسم الله الرحمن الرحيم

صدق الله العظيم

سورة طه۔اية ١١٤

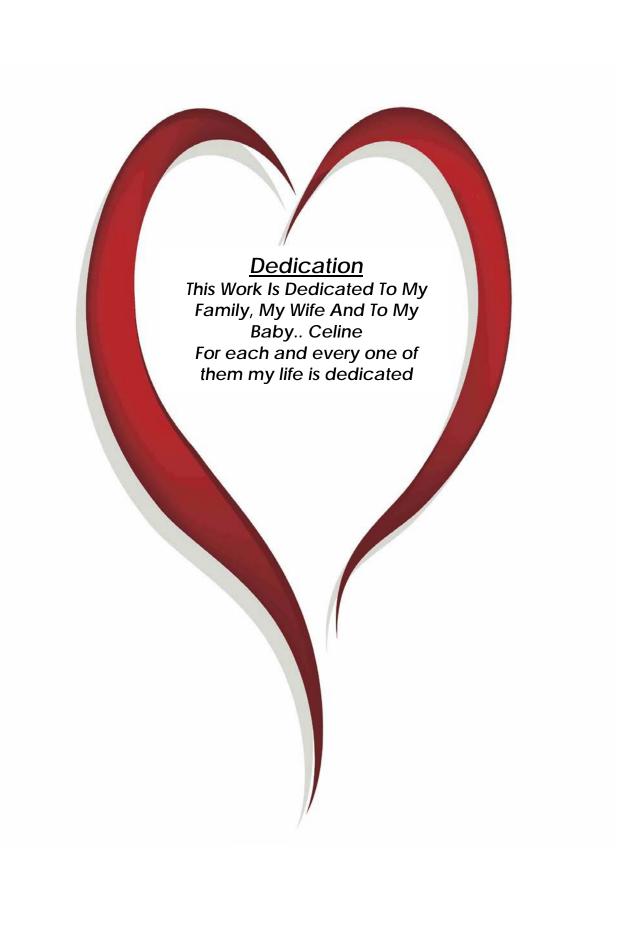
Acknowledgement Acknowledgement

First and foremost, thanks to "ALLAH", the most gracious and most merciful, to whom I relate my success in achieving anything in life.

It's my pleasure to express my profound gratitude, deepest appreciation, and ultimate thanks to my professors:

Prof. Dr. Yahia Balbaa Anwar Balbaa, Professor of cardiothoracic surgery, faculty of medicine, Cairo University. For his endless support, continuous encouragement, generous supervision and guidance.

Prof. Dr. Magued Abdelmessih Zikri, Professor of cardiothoracic surgery, Faculty of Medicine, Cairo University. He gave me much of his time, experience, and endless support that cannot be expressed in words.


Prof. Dr. Mostafa Elsabban, Professor of cardiothoracic surgery, faculty of medicine, Cairo University. For his valuable help and encouragement during the preparation of this work and in the first place for choosing the topic of the study.

For each and every one of you I am greatly indebted

I would also like to express my deep thanks and respect to *Prof. Dr. Gamal Sami*, Professor of cardiothoracic surgery, faculty of medicine, Ain Shams University, for his complete support, cooperation and help throughout this study.

With pleasure, I would like to express my appreciation and thanks to *Prof. Dr. Ahmed Hassouna*, Professor of cardiothoracic surgery, faulty of medicine Ain Shams University. For helping me out with his profuse knowledge in the field of statistics, analysis and data management which made this work come true.

At last, I would like to express my thanks to *every patient* who gave us the chance to learn from him. May God alleviate their sufferings and may all our efforts be just for their own benefit.

ABSTRACT

Background: The optimal route to delivery cardioplegia solution in patients with ischemic heart disease undergoing CABG surgery is still debatable.

Objective: The objective of this study is to find out the optimum route to deliver cardioplegia in patients with left main coronary artery stenotic disease (whether left main stem or left main equivalent) undergoing CABG surgery.

Patient and Methods: A randomized controlled study on 100 patients with left main stem or left main equivalent coronary artery disease undergoing CABG. Patients were divided into two groups; (group A, used antegrade cardioplegia n = 50) and (group AR, used combined antegrade / retrograde cardioplegia n = 50) both groups were administered the same type of cardioplegia. Cardiac troponin T and **CKMB** activity were measured in all patients 24 and 48 hours respectively after surgery. Aortic cross-clamp time, total bypass time, recovery rhythm and the need for defibrillation shocks whether in the O.R or I.C.U were all recorded. In addition to ECG monitoring and use of inotropic support intraoperative and in the ICU.

Results: The Troponin T and CKMB levels of group A were higher than those of group AR for the 24 and 48 hour measurements. These differences were statistically significant at all measurements (P=0.001).

Regarding recovery with fibrillation after removal of aortic cross clamp and the need for D.C shock; in Group A (24%) while in Group AR (8%) which is higher in group A (P= 0.001).

There was a higher incidence of significant use of intraoperative inotropic support in group A (27%) compared to (10%) in group AR with significant statistical difference between both groups (P=0.001).

There was higher incidence of postoperative ECG changes in group A (35%) than in group AR(19%) These differences were statistically significant between both groups (P=0.001).

The average cross clamp time and bypass times were higher in group AR (83.58mins, 113.38mins) than in group A (71.32mins, 101.92mins) with significant statistical difference between both groups (P = 0.009, P = 0.043).

Conclusion: Although both routes of cardioplegia deliveries allowed for excellent clinical results, cardiac enzymes, initial reperfusion rhythm, use of intra-operative inotropic support and post operative ECG changes, were able to confirm better myocardial preservation in combined antegrade/retrograde delivery of cardioplegia.

Key Words: Antegrade, Retrograde, Cardioplegia, left main, CABG.

CONTENTS

Title	Page
List of Abbreviations	I
List of Tables	III
List of Figures	V
Introduction	1
Aim of Work	٤
Chapter -1- Anatomical background	٥
Chapter -2- Historical Overview	74
Chapter -3- Biochemical Aspects of Myocardial Cell	47
Chapter -4- Pathophysiology of Tissue Injury	٣٩
Chapter -5- Basic Concepts of Myocardial Protection	٥,
Chapter -6- Types of Cardioplegic Solutions	79
Chapter -7- Cardioplegia Administration	٧٧
Patients And Methods	85
Results	95
Discussion	137
Summary and Conclusion	162
References	166
Arabic Summary	١٨٢

List of Abbreviations

A	Antegrade cardioplegia
ADP	Adenosine diphosphate
AIV	Anterior interventricular artery
AMP	Adenosine monophosphate
AR	Antegrade-retrograde cardioplegia
ATP	Adenosine triphosphate
A-V NODE	Atrioventricular node
BDM	2-3-butanamide
BR-HTK	Bretschneider- Histidine-Tryptophane-Alpha ketoglutarate
CA	Coronary artery
Ca ⁺⁺	Calcium ions
CABG	Coronary artery bypass grafting
CAD	Coronary artery disease
CICR	Calcium induced calcium release
cNOS	Constitutive nitric oxide
CoA	Coenzyme A
COPD	Chronic obstructive pulmonary disease
CPB	Cardiopulmonary bypass
cTn ₁	Cardiac troponin I
Diag	Diagonal artery
ECC	Excitation contraction coupling
EDRF	Endothelial derived relaxing factor
EF	Ejection fraction
EM	Resting membrane potential
FAD	Flavin adenine dinucleotide
GCV	Great cardiac vein
GDP	Guanosine diphosphate
GIK	Glucose –insulin- potassium
GTP	Guanosine triphosphate
ICa,L	L- type calcium channel
ICU	Intensive care unit
IHD	Ischeamic heart disease
INa	Fast sodium channel
K ⁺	Potassium ions
LAD	Left anterior descending artery
LCX	Left circumflex artery
LMB	Left marginal branches
LMT	Left main trunk

MCV	Middle cardiac vein
MI	Myocardial infarction
mm	millimole
MVO	Myocardial oxygen consumption
NADH	Nicotinamide adenine dinucleotide hydrogen
NO	nitric oxide
PDA	Posterior descending artery
Pi	Inorganic Phosphate
RCA	Right coronary artery
RMA	Right marginal artery
RYR	Ryanodine receptors
SR	Sarcoplasmic reticulum
St H-1	St Thomas hospital number one
St H-2	St Thomas hospital number two
TCA	Tricarboxylic acid cycle

List of Tables

Table No	Title	Page No
1	The composition of the Bretschneider (BR) and the St. Thomas' Hospital (STH) cardioplegic solutions.	27
2	The composition of four different crystalloid cardioplegic solutions.	28
3	Composition of Buckberg's cold blood cardioplegic solution	29
4	Composition of Birmingham solution	73
5	Composition of crystalloid potassium insulin (University of Minnesota) solution	75
6	Components used to raise osmolality	76
7	Description of personal and Medical characteristics of all study patients	102
8	Description and comparison of personal and medical characteristics among both study groups	103
9	Description of preoperative cardiac conditions among all study patients	108
10	Description and comparison of preoperative cardiac conditions among both study groups	109
11	Description of operative category and surgical conditions among all study patients	113
12	Description of operative category and surgical conditions among both study groups	113
13	Description of operative details among all study patients	118
14	Description and comparison of operative details among both study groups	118
15	Description of Aortic clamp time and bypass time among all study patients	120
16	Description and comparison of Aortic clamp time and bypass time among both study groups	120

1		
17	Description of ICU events among all study patients	124
18	Description and comparison of ICU events among both study groups	124
19	Description of ICU and hospital stay among both study groups	125
۲.	Description and comparison of ICU and hospital stay among both study groups	170
71	Description of pre and post operative EF among all study patients	۱۲۲
77	Description and comparison of pre and post operative EF among both study groups	۱۲۲
23	Description of Change in ejection fraction among all study patients	127
7 £	Description of post operative complications among all study patients	179
25	Description and comparison of post operative complications among both study groups	129
26	Description of Blood pressure at different follow ups among all study patients	129
27	Description and comparison of Blood pressure, at different follow ups among both study groups	130
28	Description of troponin at different follow ups among all study patients	130
29	Description and comparison of troponin at different follow ups among both study groups	130
30	Description of CKMB at different follow ups among all study patients	132
31	Description and comparison of CKMB at different follow ups among both study groups	132

List of Figures

Figure No	Title	Page No
1	3D spider view (<i>superior view</i>), coronary ostia.	5
2	Division of the coronary arteries.	6
3	Diagram of coronary arteries.	8
4	Identification of coronaries in axial view.	9
5	Identification of coronaries in short axis view.	9
6	Identification of coronaries in 2D curved view.	10
7	3D, RCA segmentation.	11
8	3D views, LCA segmentation.	13
9	CA and segmentation, bull's eye.	14
10	Each coronary artery irrigates different segments of the myocardium.	15
11	Coronary veins. Diaphragmatic view: (1) coronary sinus, (2) great cardiac vein, (3) LV posterior vein, (4) middle cardiac vein, (5) small cardiac vein.	16
12	Pressure tracings obtained during simultaneous measurements of pressure in the coronary sinus (lower tracing) and the posterior vein of the left ventricle (upper tracing)	19
13	Retrograde venogram of the coronary sinus and its tributary veins, showing	22
14	Myocardial metabolic pathways.	33
15	Amino acid and tricarboxlic acid cycle (TCA) intermediate metabolism in the heart.	35
16	The cellular targets for cardioplegic arrest and their influence on the action potential with examples of pharmacological agents.	39
17	pathophysiology of myocardial stunning.	44
18	Mechanisms proposed for classical and delayed preconditioning.	46
19	Myocardial content of ATP, creatine phosphate (CP) and lactate during ischemia.	49

20	The relationship between extracellular potassium concentration (mmol/L) and the membrane potential (mV)	53
21	The mechanisms involved in sodium and calcium loading in cardiac myocytes during depolarized arrest	61
22	The second component of protection: hypothermia. Isolated working rat hearts were subjected to 60 min of ischemia after receiving preischemic infusion of St. Thomas' Hospital solution no 1 enriched with ATP and creatine phosphate.	69
23	The antegrade cardioplegia catheter is shown.	80
24	Shows balloon catheter in the coronary sinus during coronary catheterisation.	84
25	Retrograde catheter with flexible stylet and self-inflating balloon	85
26	Retrograde catheter placement.	89
27	Sex distribution in the study	96
28	Distribution of hypertension in the study	97
29	Distribution of diabetes in the study	98
30	Distribution of smokers in the study	99
31	Distribution of COPD in the study	100
32	History of cerebrovascular accident in the study	101
33	Regional wall motion abnormalities among the whole study population	104
34	History of Myocardial infarction in the study	105
35	Incidence of Unstable angina in the study	106
36	Distribution of the cardiac medications among all study patients	107
٣٧	Distribution of the operative category among all study patients	11.
38	Distribution of the type of left main disease in the study.	111
39	Number of diseased vessels among both study groups.	112
40	Distribution of revascularization among both study groups.	114
41	Description of Initial reperfusion rhythm among both study groups.	115

E .		
42	Distribution of the need D.C shock among all study population	116
٤٣	Distribution of the need for intra-operative inotropic support among both study groups.	117
٤٤	Aortic cross clamp and total bypass time among both study groups.	119
45	The use of high ICU inotropic support in both study groups	121
46	Incidence of post operative ECG changes in both study groups	122
47	Incidence of post operative arrhythmias in the study	123
48	Incidence of change in ejection fraction in the study	127
49	Time course of Troponin T among both study groups	131
50	Time course of CKMB among both study groups	133

Introduction

The word cardioplegia combines the roots "cardio" meaning the heart, and "plegia" meaning paralysis. Technically this means arresting or stopping the heart in order for surgical procedures to be done in a still and bloodless field. However, in practice, the word cardioplegia refers to the solution used to arrest and protect the ischemic myocardium from cell death until the surgical procedure has been done. (1)

This is achieved by reducing myocardial metabolism through reduction of cardiac work load which is aided by the use of hypothermia. (2)

The optimal delivery of cardioplegic solution to induce and maintain cardiac asystole is fundamental for myocardial preservation during cardiac surgery. The most common procedure to achieve this is via infusing cold cardioplegic solution into the coronary circulation. This protects the myocardium from damage during the period of ischemia. (3)

There are many cardioplegic solutions of varying additives. The only vital additive in most solutions is potassium chloride in a 20-35 mmol/L concentration range. Other additives such as mannitol, sodium bicarbonate, xylocaine, et cetera, are of secondary importance. (4)