

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Optimum Site selection of

Concrete Batch Plants in Egypt

By Mahmoud Malek Olwan B.Sc. 1999 M.Sc. 2005

A Dissertation
Submitted In Partial Fulfilment Of The Requirement
of the Degree of
DOCTOR OF PHILOSOPHY
In Civil Engineering (Structural)

Under Supervision of

Professor Ibrahim Abd el Rasheed Nossir **Professor Ahmed Sherif Essawy**

Professor of Construction Management

Professor of Concrete Structures

Ain Shams University

Ain Shams University

Cairo - 2013

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

APPROVAL SHEET

Thesis Doctor of philosophy in Civil Engineering (Structural)

Student Name Mahmoud Malek Muhammad Olwan

Thesis Title Optimum Site selection of Concrete Batch Plants in Egypt

Examiners Committee:

	Signature
Professor: Sami Mohamed Ferieg	O
Professor of Construction Management	
Program Director Conflict and Dispute Management	
for Project and Contract	
Waterloo University	
Professor: Adel Abo Elyazed Elsmadony	
Professor of Construction Management	
Faculty of Engineering	
Helwan University	
Professor: Ahmed Sherif Essawy	
Professor of Concrete Structures	
Faculty of Engineering	
Ain Shams University	
Professor: Ibrahim Abd el Rasheed Nossir	
Professor of Construction Management	
Faculty of Engineering	
Ain Shams University	

Date: 26-6-2013

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Doctor of philosophy in Civil Engineering (Structural)

Thesis

Date: 26-6-2013

Student Name	Mahmoud Malek	k Muhammad Olwan	l
Thesis Title	Optimum Site se	election of Concrete 1	Batch Plants in Egypt
	•		
Supervisors:			
			Signature
Professor: Ahmee	d Sherif Essawy		8
Professor of Conc	•		
Faculty of Engine			
Ain Shams Univer	C		
Am Shams Chryci	Sity		
Professor: Ibrahi	m Abd al Daghaa	d Noggin	
Professor of Const	O	nt	
Faculty of Engineer	ering		
Ain Shams Univer	csity		
	-		

Statement

This dissertation is submitted as partial fulfillment of Ph.D. degree in Civil Engineering (Structural), Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Date:

Name: Mahmoud Malek Muhammad Olwan

Signature:

Researcher Data

Name Mahmoud Malek Muhammad Olwan

Date of Birth 1 May 1977

Place of Birth Belbais, Sharqia, Egypt

1st Academic Degree Bachelor in Civil Engineering, Higher

Technological Institute, 1999

Field of Specialization Civil Engineering

2nd Academic Degree Master in Construction Management, Faculty of

Engineering, Cairo University, 2005

Field of Specialization Construction Management

Current Career Teaching Assistant in Higher Technological

Institute

Acknowledgment

I would like to express my gratitude to my supervisors, Professor Ibrahim Abd el Rasheed, Professor Ahmed Sherif Essawy. Their tolerant, constructive comments and reviews guided me through this research project. This dissertation would not have been possible without their belief, encouragement and advice.

I am also grateful to Eng. Mdhet Syam, Eng Muhammad Darwesh, Dr. Aymen Othman, and Dr. Claude Karroum, for their technical insightful discussions, support and encouragement. There is no words exist grants my beloved and wonderful parents what they deserves for their encourage, patience, and full support throughout the whole life and research process.

I would like to dedicate this dissertation to my father, mother's soul, my wife and my daughter.

ABSTRACT

Ready mix concrete (RMC) has a potential role for generating income in the field of construction industry in Egypt. The standard of production and awareness of ready mix should be raised so that there are measures to be used in evaluating ready mix operations other than the result of the crushed cubes of the hardened concrete and the slump of the fresh concrete. Protection of the surrounding environment is one of the vital factors which should be considered. One of the methods is to improve the quality of fresh concrete and durability of hardened concrete and to enhance construction productivity. The global trend is pushing to use RMC produced in patch plants. The main aim in this study is to develop pilot framework criteria, which is useful for spreading Concrete Batch Plants (CBPs) as network all-over Egypt. This shall serve new and old urban communities and other habitations.

The pilot framework criteria needs an optimum location selection technique was devised in this study. To define the variables or factors that determine site suitability, a bibliographic database was created and aspects of interest were chosen. Then, the most comprehensive aspects were singled out, by eliminating redundant ones. Variables were grouped in a criteria based on the way they influence the project. Variables were classified as intrinsic environment, extrinsic environment, logistic, and socioeconomic criteria. Extensive interviews and questionnaires with experts working in RMC industry and municipalities, with more than 15 years of experience in site work dealing with RMC, were done. These structured interviews aim to evaluate the significance and rank of factors according to their suitability weight. Logistic criterion received the highest values, followed by environmental extrinsic issues.

A Geographic Information System (GIS) using a base map compiled from different types of maps was also developed. Thematic map was accomplished, for the administered the certain study area graphically for each alternative. Resultant compiled data in thematic maps were obtained, and the multi-criteria evaluation was used to combine the variables.

Finally, minimum variance based on operational research or Expert Choice based on Analytic Hierarchy Process (AHP) was used to obtain the optimum sites for CBP, through added values of polygons in the maps, for the criteria. The developed framework was verified and found yield results in good agreement with experts' opinions. This framework also establishes considerations adequate CBP

site selection process thru pilot framework criteria. This could be easily tolerated to be applied in different situations.

Keywords; Ready Mix Concrete, Optimization, Site Selection, Concrete Batch Plant, Geographic Information System

Contents

Acknowledgment	XI
Abstract	XI
List of Figures	XI
List of Tables	XIII
Abbreviations	XIV
Chapter 1 Introduction	1
1.1. Overview	1
1.2. Problem statement	1
1.3. Objectives	2
1.4. Scope	2
1.5. Methodology	3
1.6. Thesis Organization:	3
Chapter 2 Literature Review	6
2.1. Introduction	6
2.2. Optimum Site selection	6
2.3. Geographical Information Systems:	8
2.4. GIS based Site Selection	14
2.5. GIS Data analysis	15
2.6. Cartographic Model	16
2.7. Decision Support Systems	16
2.7. Operational Research	17
2.8. The Analytical Hierarchical Process	19
Chapter 3 Site selection Criteria	21
3.1. Introduction	21
3.2. Factors Affecting Selection CBP Locations	21
3.3. Site Selection Criteria:	28
3.3.1Concrete demand and proximity	28
3.3.2Environmental Requirements	29
3.3.3Infrastructure:	33
3.3.4 Emergency Ingress/Egress:	34
3.3.5 Others	34
Chapter 4 Relevant data sources, model, and integration	36
4.1 Introduction	36
4.2 Factors Affecting Batch Plant Location	36

4.3 GIS Model Mechanism	42
4.4 Model processing steps	44
Chapter 5_Development and Implementation	61
5.1. Introduction	61
5.2 Steps to developing the model:	62
5.2.1 Data base developed	62
5.2.2 Symbology and legend	77
5.2.3 Attribute	83
5.2.4 Results	88
Chapter 6 Results and verification	92
6.1. Introduction:	92
6.2. Mathematical optimum module	92
6.3. AHP Analysis	94
6.4. The Evaluation Report	96
6.5. Results and Discussions	97
Chapter 7 Summary, Conclusions and Recommendations	102
7.1 Summary	102
7.2 Conclusion	102
7.3. Recommendations	104
7.3.1 Recommendations to governmental authorities and construction p	professionals 104
7.3.2 GIS Based Model	105
7.3.3 The Importance of CBP plan for municipalities	106
7.3.3.1 Advantage of Standard RMC against site-mix concrete	108
7.3.3.2 The challenges of ready mix concrete	109
7.3.3 Environmental Guidelines for CBP Operational phase	109
Biblography	112

List of Figures

Figure 1-1: Research Methodology	5
Figure 2-1: Methodology for Allocating Facility Sites	
Figure 3-1: Suggested factors Affecting CBP Location Selection By Author	
Figure 3-2: Demand Characteristics	
Figure 3-3: Proximity of CBP	
Figure 3-4: Environment	
Figure 3-5: Infrastructure – Related Factors Affecting CBP Site Selection	
Figure 3-6: Health Considerations	
Figure 4-1: GIS Mechanism	
Figure 4-2: Served Proposed Zones	
FIGURE 4-3: POSSIBLE ALTERNATIVE STATIONS AND ITS ROAD PATHS	
Figure 4-4: All Altrantive Station and Served Area	
Figure 4-5: 1 st Altrantive Raster	
Figure 4-6: 1 st Altrantive Vector	
Figure 4-7: 2 nd Altrantive Raster	
Figure 4-8: 2 nd Altrantive Vector	
Figure 4-9: 3 rd Altrantive Raster	
Figure 4-10: 3 rd Altrantive Vector	
Figure 4-11: 4 th Altrantive Raster	
Figure 4-12: 4 th Altrantive Vector	
Figure 4-13: 5 th Altrantive Raster	
Figure 4-14: 5 th Altrantive Vector	
Figure 4-15: 6 th Altrantive Raster	
Figure 4-16: 6 th Altrantive Raster	
Figure 4-17: 7 th Altrantive Raster	
Figure 4-18: 7 th Altrantive Raster	
Figure 5-1: Drop-Down Menu for Selecting Arccatalog	
Figure 5-2: Personal Geodatabase	
Figure 5-3: Data Base Screen	
Figure 5-4: Feature Dataset Screen	
Figure 5-5: Layers Set Nomination Screen	
Figure 5-6: Working Co-Ordinates Screen	
Figure 5-7: Submit The Working Layers	
Figure 5-8: Working Data Set Contain Working Layers	
Figure 5-9: Generating Working Layer	
Figure 5-10: Editing Layer Name And Its Feature Class	
Figure 5-11: Editing Data Fields' Names (1/2)	
Figure 5-12: Editing Data Fields' Names (2/2)	
Figure 5-13: Data Fields Finale Shape After Naming And Classifying Its Type	
Figure 5-14: Establishing Layers Accoutring to Its Type	
Figure 5-15: The Final Working Set After Adding All Layers	
Figure 5-16: Running Arc Gis Via Arcmap	
Figure 5-17: The Final View of Model	
Figure 5-18: Determining The Layers to be Added via Submit on Adding	
Figure 5-19: The Final Layers Shape After Adding To Arcmap	
Figure 5-20: Symbology Layers (1/3)	

Figure 5-21: Symbology Layers (2/3)	78
Figure 5-22: Symbology Layers (3/3)	79
Figure 5-23: Final Layers Shape After Adjusting Colours and Symbology	80
Figure 5-24: Imaging From Arcmap	80
Figure 5-25: General Legend	81
Figure 5-26: Select Legend Item From Map Layers (1/3)	81
Figure 5-27: Select Legend Item From Map Layers (2/3)	82
Figure 5-28: Select Legend Item From Map Layers (3/3)	82
Figure 5-29: Final Model Legend	83
Figure 5-30: General Attribute Table From Each Layer	84
Figure 5-31: Area Attributes	84
Figure 5-32: Calculate Proposed Area (1/5)	85
Figure 5-33: Calculate Proposed Area (2/5)	85
Figure 5-34: Calculate Proposed Area (3/5)	86
Figure 5-35: Calculate Proposed Area (4/5)	86
Figure 5-36: Calculate Proposed Area (5/5)	88
Figure 5-37: Export Area Attributes	88
Figure 5-38: Saving Area Attributes	88
Figure 5-39: Area Table for Each Region	89
Figure 5-40: Final Area Region Summation	89
Figure 5-41: Road Attribute	90
Figure 5-42: Road Time Consumed Calculation Each Region	90
Figure 5-43: Calculation for Proposed Area and Road Time Consumption	91
Figure 5-44-: Alternatives Attributes	91
Figure 5-45: Value of Each Site Location	91
Figure 6-1: Factors Evaluation For Each Alternative	95
Figure 6-2: Alternatives Evaluation	96

List of Tables

Table 3-1: Preliminary Questionnaires For Factors Affecting Selection Cbp Location	ıs 22
Table 3-2: Criteria for CBP Location Selection	25
Table 4-1: Life Span of CBP	36
Table 4-2: Proximity to Pouring Sites	37
Table 4-3: Infrastructure Availability	37
Table 4-4: Environmental Conditions	38
Table 4-5: Emergency Ingress/Egress	38
Table 4-6: Security by Police Authotities	39
Table 4-7: Manpower Avaliability	39
Table 4-8: Health Considrations	39
Table 4-9: Land Value	39
Table 4-10: Speed of license process	40
Table 4-11: Criteria Affecting Batch Plant Location weighing	41
Table 4-12: Available Area And Its Classification For Each City (1/4)	55
Table 4-13: Available Area And Its Classification For Each City (2/4)	56
Table 4-14: Available Area And Its Classification For Each City (3/4)	57
Table 4-15: Available Area And Its Classification For Each City (4/4)	58
Table 4-16: Dumping Paths And Its Avarge Speed (1/2)	59
Table 4-17: Dumping Paths And Its Avarge Speed (2/2)	60
Table 6-1: Values of Factors for Each Alternative	93
Table 6-2: Minimum Variance Process	94
Table 6-3: Score of Each Alternative Against Each Factor Description	100

Abbreviations

RMC Ready Mixed Concrete
CBP Concrete Batch Plant
SSCBP Site Selection for CBP

GIS Geographical Information System

DM Drum Mixer
QC Quality Control

AHP Analytic Hierarchy Process
DSS Decision support systems
OR Operational Research
SD Sustainable Development
BLOB Binary Large Object
MCA Multi-Criteria Analysis

SMCE Spatial Multiple Criteria Evaluation

GPS Global Position System
GI Geographical Information

Chapter 1

Introduction

1.1 Overview

There is a rapid growth in the use of ready mixed concrete (RMC) for construction in developing countries. In Egypt, the production and use of RMC is currently widespread, which improves the performance of concrete because efficient systematic external monitoring and self-inspection could be easily applicable.

Concrete Batch Plant (CBP) is an important element in any concrete construction process, whether it is working as a central mixing plant on project site or as offsite one producing RMC which are to be transported by transit mixers¹to projects.

Site selection of CBP should be in a suitable location, as CBP costs a lot of funds, and it is not allowable to be located in an erroneous site. Erroneous location may result in spending a lot of money, which may prove later unsuitable to fulfil its function, or totally abandon feasibility of CBP or impact negatively on the surrounding environment. So, it is very important to study all relevant site elective criteria and develop advanced techniques that can support the optimum site selection process.

This research work consists of the compilation of the appropriate data followed by extensive literature review, experts' interviews, and questionnaires with expert opinions. It can be concluded that a mandatory quality study can be introduced successfully into the existing RMC industry in Egypt, with immediate benefits to the industry and its customers.

1.2 Problem statement

Most of middle and small contractors use the drum mixer (DM), which usually results in poor quality concrete. This could be attributed to a general disregard of the basics of good quality intentionally or un-intentionally by ordinary DM besides the waste of material during pouring. The employment of unskilled labours has also contributed to the same result of producing poor quality concrete. In addition to the huge storage areas on site, that is used. Engineers tend to specify unwarranted concrete strength in order to compensate for expected poor quality, quick deterioration, and high cost of maintenance due to performance defects.