Current Status of the Implication of the Clinical Practice Pattern in Hemodialysis Prescription in Regular Hemodialysis Patients in Egypt (Cairo)

Naser city (sector B4)

Chesis

Submitted for partial fulfillment of Master Degree in Internal Medicine

By **Hosam Elsayed Hoseiny** *M.B.B.CH. – Ain Shams University*

Under Supervision of

Prof. Dr. Khaled Hussien Abo Seif

Professor of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

Prof. Dr. Ahmed Aziz Abd-Elnaby

Professor of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

Dr. Essam Nour El-Din Afifi

assistant Professor of Internal Medicine and Nephrology Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain Shams University 2014

First and foremost thanks to ALLAH, the Most Merciful.

I wish to express my deep appreciation and sincere gratitude to Prof Dr. Khaled Hussien Abo Sief, Professor of Internal Medicine and nephrology, Ain Shams University, for his close supervision, valuable instructions, continuous help, patience, advices and guidance. He has generously devoted much of his time and effort for planning and supervision of this study. It was a great honor to me to work under his direct supervision.

I wish to express my great thanks and gratitude to Prof Dr. Ahmed Aziz AbdElnabi Professor of Internal Medicine and nephrology, Ain Shams University, for his kind supervision, indispensable advice and great help in this work.

I wish to express my great thanks and gratitude to Dr. EssamNour El Din Afifi assistant Professor of Internal Medicine and nephrology, Ain Shams University, for his kind supervision, indispensable advice and great help in this work.

Last and not least, I want to thank all my family, my wife, my colleagues, , for their valuable help and support.

Finally I would present all my appreciations to my patients without them, this work could not have been completed.

Hossam Alsyed Hosieny

LIST OF TABLES

Table No.	. Title	Page
Table (1) :	Elements of Hemodialysis Prescription	5
Table (2) :	Gender and age distribution in the study population	55
Table (3) :	Different causes of ESRD in the study population	56
Table (4) :	Work status in the study population	57
Table (5) :	Dependency status in the study population	58
Table (6):	Frequency of HD sessions/week in the study population	ion59
Table (7):	Duration of HD session in the study population	60
Table (8):	Sponsoring status in the study population	61
Table (9):	Type of vascular access in the study population	62
Table (10)	percent of access failure in the study population	63
Table (11)	Frequency of access failure in the study population	64
Table (12) :	The levels of Hemoglobin during the last 6 months.	65
Table (13)	: Hemoglobin category in the study population	65
Table (14)	: History of blood transfusion in the study population .	66
Table (15)	Different types of ESA used by the study population	67
Table (16)	Frequency of ESA brand used by the study population	on68
Table (17)	Dose of ESA used by the study population	69
Table (18)	: History of iron injection in the study population	71
Table (19)	: History of vitamin B complex use in the study popula	ation 72
Table (20)	: History of vitaminD use in the study population	73
Table (21) :	Dose of vitaminD used by the study population	on74
Table (22)	: The levels of Calcium, phosphorus and PTH during t	he last 6
	months covered by the study	75

LIST OF CONTENTS

Title	Page No.
Introduction	1
Aim of The Work	3
REVIEW OF LITERATURE	
Chapter 1: Hemodialysis prescription	4
Chapter 2: Hemodialysis associated comorbidities	28
Chapter 3: Guidelines for kidney diseases	34
Chapter 4: Hemodialysis in Egypt	45
Patients and Methods	49
Results	55
Discussion	87
Summary and conclusion	95
Recommendations	 99
References	101
Arabic Summary	120

LIST OF TABLES (Cont....)

Table No.	Title	Page
Table (23): Calc	cium levels in the study population	76
Table (24): Pho	sphorus level in the study population	77
Table (25): Calc	cium phosphorus product level in the study pop	oulation78
Table (26) : Occ	urrence of hypotension during HD session in	the study
popu	ılation	79
Table (27) : Occ	urrence of cramps during HD session in the stu	udy
рори	ılation	80
Table (28) : Occ	urrence of itching during HD session in the stu	ıdy
рори	ılation	81
Table (29) : HC	V status in the study population	82
Table (30) : HB	V status in the study population	83
Table (31): Crit	eria of dialyzer used in the study population	84

LIST OF FIGURES

Figure No.	Title	Page
Figure (1)	: Mechanisms of solutes removal in	hemodialysis
	(William, 1999)	8
Figure (2):	Comparison of urea clearance rates between lo	w- and high-
	efficiency hemodialyzers	13
Figure (3):	Water permeability of a membrane and	control of
	volumetric ultrafiltration in hemodialysis	17
Figure (4):	Pathways of thrombogenesis in extracorpor	real circuits.
	(William, 1999)	21
Figure (5):	The development of clinical practice guidelines	36
Figure (6):	Gender distribution in the study population	55
Figure (7):	Different causes of ESRD in the study population	on56
Figure (8):	Work status in the study population	57
Figure (9):	Dependancy status in the study population	58
Figure (10):	Frequency of HD sessions/week in the study po	pulation59
Figure (11):	Duration of HD session in the study population	60
Figure (12):	Sponsoring status in the study population	61
Figure (13):	Sponsoring status in the study population	62
Figure (14):	Percent of access failure in the study population	63
Figure (15):	Frequency of access failure in the study popul	ation64
Figure (16):	Hemoglobin category in the study population	66
Figure (17):	History of blood transfusion in the study Popula	tion67
Figure (18):	Different types of ESA used by the study popul	lation68
Figure (19):	History of iron injection in the study population	70
Figure (20):	History of iron injection in the study population	71
	History of vitaminB complex use in the study pe	•
Figure (22):	History of vitamin D use in the study population	n73

LIST OF FIGURES (Cont....)

Figure No.	Title Page
Figure (23):	History of vitamin D dose in the study population74
Figure (24):	Calcium levels in the study population76
Figure (25):	Phosphorus level in the study population77
Figure (26):	Calcium phosphorus product level in the study population 78
Figure (27):	Occurrence of hypotension during HD session in the study
	population
Figure (28):	Occurrence of cramps during HD session in the study
	population80
Figure (29):	Occurrence of itching during HD session in the study
	population
Figure (30):	HCV status in the study poulation82
Figure (31):	HBV status in the study population83
Figure (32):	Criteria of dialyzer used in the study population84

LIST OF ABBREVIATIONS

Abbrev.	Full term	
\mathbf{AV}	Arteriovenous access	
BFR	Blood flow rate	
BMI	Body mass index	
BP	Blood pressure	
BUN	Blood Urea Nitrogen	
CAPD	Continuous ambulatory peritoneal dialysis	
CAPR	Cardiopulmonary recirculation	
CKD	Chronic kideny disease	
CMS	US Centers for Medicare and Medicaid	
	Services	
CPG	Clinical practice guidelines	
CRP	C- reactive protein	
CVC	Central venous cathter	
CVD	Cardiovascular disease	
DFR	Dialysate flow rate	
\mathbf{DM}	Diabetes mellitus	
DOPPS	Dialysis outcome and practice pattern study	
ERA-EDTA	the European Renal Association-European	
	Dialysis and Transplantation association	
ESRD	End stage renal disease	
GFR	Glomerular filtration rate	
GraDe	Grades of recommendation assessment,	
	Development, and evaluation	
HBV	Hepatitis B Virus	
HCV	Hepatitis C Virus	

LIST OF ABBREVIATIONS (Cont....)

Abbrev.	Full term
IID	Hama dialania
HD	Hemodialysis
HDF	Hemodiafiltration
HF	Hemofiltration
HTN	Hypertension
IPD	Intermittent peritoneal dialysis
K/DOQI	Kidney Disease Outcome Quality Initiative
KDIGO	Kidney disease improving global outcomes
KOA	The mass transfer area coefficient
MIA	Malnutrition -Inflammation atherosclerosis
	(MIA) Syndrome
MICS	'malnutrition—inflammation complex
	syndrome'
MOH	Ministry of health
NKF	National Kidney Foundation
PEM	Protein energy malnutrition
QIP	Qulaity improvement programs
RRT	Renal replacement therapy
SRI	Solute removal index
TMP	Transmembrane pressure
TNF α	Tumor necrosis factor
UF	Ultrafiltration
UKM	Urea kinetic modeling
UpostHD	Urea posthemodialysis
UpreHD	Urea prehemodialysis
URR	Urea reduction ratio
β2M	Beta 2 microglobulin
$(\mathbf{K_{uf}})$	The ultrafiltration coefficient
(1xuf)	The untamulation coefficient

INTRODUCTION

Studies examining the link between research evidence and clinical practice have consistently shown gaps between the evidence and current practice. Some studies in the United States suggest that 30%-40% of patients do not receive evidence-based care, while in 20% of patients care may be not needed or potentially harmful. However, relatively little information exists about how to apply evidence in clinical practice, and data on the effect of evidence-based guidelines on knowledge uptake, process of care or patient outcomes is limited .(Locatelli et al., 2004)

Appropriately then, the care of dialysis patients has been the prime focus of nephrology, particularly after the widespread availability of maintenance dialysis when it became evident that mortality of dialyzed patients was high and their quality of life far from adequate. (*Ekonyan et al, 2002*)

Guidelines practiced on anemia and actual practices are much different with different places and patients according to treatment. Moreover, in individual countries and individual units within countries local circumstances relating to economic conditions; organization of health care delivery or even legal constraints may render the immediate implementation of best practice guidelines difficult or impossible. Nevertheless, they provide a goal against which progress can be measured. (*Locatelli et al.*, 2004)

Compliance with clinical guidelines is an important indicator of quality and efficacy of patient care, at the same time their adaptation in clinical practice may be initiated by numerous factors including; clinical experts, patient performance, constrains of public health policies, community standard, budgetary limitation and methods of feeding back information concerning current practice. (*Cameron*, 1999)

End-stage renal disease (ESRD) is one of the main health problems in Egypt. Currently, hemodialysis represents the main mode for treatment of chronic kidney disease stage 5 (CKD5), previously called ESRD or chronic renal failure .(*Afifi*, 1999)

Although hemodialysis is often used for treatment of ESRD, no practice guidelines are available in Egypt. Healthcare facilities are seeking nowadays to develop practice guidelines for the sake of improving healthcare services. (*Ministry of Health and Population*, 1999)

AIM OF THE WORK

To study the pattern of current clinical practice in hemodialysis prescription in regular hemodialysis patients in Egypt and to compare this pattern with standard international guidelines in hemodialysis prescription, stressing on anemia, bone disease management and adequacy of dialysis.

HEMODIALYSIS PRESCRIPTION

Tremia is a quite complex syndrome encompassing metabolic disorders and accumulation of various sized uremic toxins (*Vanholder et al.*, 2003); that it would be impossible for intermittent renal replacement therapy (RRT) to replace the homeostatic role of the kidneys. Hence, the importance of providing at least adequate dialysis. (*Ekonyan*, 2005)

Eradication of uremic symptoms was supposed to predict good long term results of dialysis-low morbidity and mortality. This approach of assessing adequacy is subjective, requires very careful monitoring of patients, and is time consuming (*Twardowski*, 2003)

Hemodialysis (HD) therapy has been one of the true success stories in the annals of medical science. Before the availability of this treatment, the diagnosis of kidney failure was a death sentence. (*Butman and Nissenson*, 2005)

Unfortunately, despite major advances in the technology of HD and in the management of its complications, the morbidity and mortality of patients on dialysis remain high, at a time that the incidence and prevalence of kidney failure persistently are increasing. Hence, the early and continued concern with the adequacy of dialysis . (*Ekonyan*, 2005)

Optimal care of the patient receiving long-term HD requires broad knowledge of the HD technique and appropriate prescription according to patient- and device-dependent variables (*Ikizler and Schulman*, 2005).

Table (1): Elements of Hemodialysis Prescription

Dialyzer
Time & frequency
Blood flow rate
Dialysate flow rate
Ultrafiltration rate
Dialysate composition
Anticoagulation

(Brenner and Rectors, 2008).

1-Dialyzers

Types of dialyzers and its choice

The dialyzers are calssified either according to their synthetic material into: cellulose, modified cellulose or synthetic polymers Or according to their hydrokinetics into High-Flux &Low-Flux Dialyzers. All dialyzers in clinical use are of the hollow-fiber type with membranes of cellulose, modified cellulose or synthetic polymers. (*Ronco and Clark*, 2005)