

Ain Shams University Faculty of Education Physics Department

Study of the Effect of Heat Treatment on the Structural and Mechanical Properties of an Aluminum Based Solder Alloy

THESIS

Submitted for the Degree of Doctor of Philosophy for the Teacher's Preparation in Science (Physics)

By

Ghada Mohammed Ibrahim Badr

B. Sc. and Education 2002, Gen. Diploma (Physics) 2003, Spec. Diploma (Physics) 2004 and M. Sc (Physics) 2007.

To

Physics Department Faculty of Education Ain Shams University

2011

بسم الله الرحمن الرحيم

{و قال رب زدني علما}

حدق الله العظيم

|--|

Approval Sheet

Title : Study of the Effect of Heat Treatment on the

Structural and Mechanical Properties of an

Aluminum Based Solder Alloy

Candidate: Ghada Mohammed Ibrahim Badr

Degree : Degree of Doctor of Philosophy for Teacher's

Preparation in Science (Physics)

Board of Advisors

Approved by

Signature

1. Prof. Dr. Gamal Saad Awadalla

Physics Department, Faculty of Education, Ain Shams University

2. Prof. Dr. Sanaa Ahmed Fayek Hassan

Physics Department, National Center for Radiation Research and Technology, Nasr City

3. Prof. Dr. Adel Fawzy Ibrahim

Physics Department, Faculty of Education, Ain Shams University

4. Dr. Hany Nazmy Soliman

Physics Department, Faculty of Education, Ain Shams University

Date of presentation //2011

Post graduate studies:

Stamp: / / Date of approval: / /

Approval of Faculty Council: / /2011

Approval of University Council: / / 2011

NANDANDANDANDANDANDANDAN

Ain Shams University Faculty of Education Physics Department

Thesis Title:

Study of the Effect of Heat Treatment on the Structural and Mechanical Properties of an Aluminum Based Solder Alloy

Researcher Name: Ghada Mohammed Ibrahim Badr

Submitted to:

Physics Department, Faculty of Education, Ain Shams University

Supervised by:

- 1. Prof. Dr. Gamal Saad Awadalla
- 2. Prof. Dr. Sanaa Ahmed Fayek Hassan
- 3. Prof. Dr. Adel Fawzy Ibrahim
- 4. Dr. Hany Nazmy Soliman

قسم الفيزياء

دراسة تأثير المعالجات الحرارية على الخصائص التركيبية والميكانيكية لسبيكة لحام قاعدتها الألومنيوم

رسالة مقدمة للحصول علىدرجة دكتوراه الفلسفة لإعداد المعلم في العلوم (فيزياء)

مقدمة من

غادة محمد إبراهيم بدر

إلى قسم الفيزياء- كلية التربية- جامعة عين شمس

4.11

شكر وتقدير

أشكر السادة أعضاء هيئة الإشراف وهم:

١. أ.د. جمال سعد عوض الله

٢. أ.د. سناء أحمد فابيق

۲. أ.د. عـــــادل فــــوزي إبراهيم

۶. د. هـــانی نـــظمـــی سلیمان

ثم الأشخاص الذين تعاونوا معى بالبحث وهم:

السادة أعضاء هيئة التدريس و المعيدين بقسم الفيزياء – كلية التربية – جامعة عين شمس.

فبتوفيق من الله سبحانه وتعالى ثم بفضل معاونتهم لى صار هذا العمل معنوفيق من الله سبحانه ومعنا

جامعة عين شمس كلية التربية قسم الفيزياء

رسالة داكتوراه

اسم الطالب : غادة محمد إبراهيم بدر

عنوان الرسالة: دراسة تأثير المعالجات الحرارية على الخصائص التركيبية والميكانيكية لسبيكة لحام قاعدتها الألومنيوم

الدرجة العلمية : دكتوراه الفلسفة لإعداد المعلم في العلوم (فيزياء).

لجنة الإشراف:

١. أ.د. جمال سعد عوض الله.

أستاذ متفرغ بقسم الفيزياء - كلية التربية- جامعة عين شمس.

٢. أ.د. سناء أحمد فايق.

أستاذ الفيزياء - مركز تكنولوجيا الإشعاع - مدينة نصر.

٣. أ.د. عسادل فسوزي إبراهيم.

أستاذ الفيزياء - كلية التربية- جامعة عين شمس.

٤. د. هاني نظمي سليمان.

مدرس الفيزياء- كلية التربية- جامعة عين شمس.

الدراسات العليا

أجيزت الرسالة بتاريخ / ٢٠١١/

ختم الإجازة

موافقة مجلس الجامعة / ٢٠١١/

موافقة مجلس الكلية / /۲۰۱۱

Conclusions

From what have been discussed, one can deduce the following conclusions:

- 1. Tensile properties of Al-4043 alloy mainly depend on the size of Si-particles.
- 2. Traditional heat treatment regimes for Al-Si-Fe-Cu alloys resulted in increasing the size and/or coalescence of Si-particles with increasing temperature of annealing T_a and/or time of annealing t_a while size of α and β -particles was slightly decreased.
- 3. The work-hardening parameters $\sigma_{y0.2}$ and σ_f were found to be decreased with increasing T_a and/or t_a while ϵ_T increased leading to softening the material.
- 4. The higher rate of decrease of the WHP in the early stage of annealing may be due to the increase of the precipitation (coalescence) rate Si-phase particles.
- 5. The detrimental effect of α and β -particles in Al-Si alloys may be kept low as possible by suitable heat treatment.
- 6. The work-hardening parameters $\sigma_{y0.2}$ and σ_f were found to satisfy the well known Norton power law, $\sigma = C \, \acute{\epsilon}^{\,m}$.
- 7. The work-hardening parameters $\sigma_{y0.2}$, σ_f and χ_p increased with increasing ϵ and /or decreasing the testing temperature T.
- 8. Both the total strain ε_T and strain rate sensitivity index **m** increased with increasing T and/or decreasing ε •.

- 9. Activation energy was estimated as 21 k J mol⁻¹ corresponding to that of dislocation movement and ordering to be the operating mechanisms during the tensile tests.
- 10. Refinement of the internal microstructure in Al-4043 alloy is probably due to the presence of Fe-, Cu- and Tirich phases that produced fine and homogenously distributed Si-particles.
- 11. The normalized relaxed stress decreased with increasing the relaxation time at different strain rates, testing temperatures, annealing temperatures and time of annealing.
- 12. The energies activating the relaxation process in the two stages (I and II) were found to be10.6 and13.4 kJ/mol, respectively which are close to that required for movement of the released dislocation loops from the pinning points acting upon it.

Acknowledgement

Acknowledgement

I wish to express my deep gratitude to Head of Physics Department, Faculty of Education, Ain Shams University for his assistance and encouragement.

The author wishes to express her sincere appreciation for *Prof. Dr. Gamal Saad Awadalla*, Physics Department, Faculty of Education, Ain Shams University for suggesting this work, for his supervision and advice during the course of this work.

I wish also to express my deep gratitude for *Prof. Dr. Adel Fawzy Ibrahim*, Physics Department, Faculty of Education, Ain Shams University, for his valuable help, guidance and support, continuous encouragement and supervision throughout this work.

I would like to thank *Prof. Dr. Sanaa Ahmed Fayek*, Physics Department, National Center for Radiation Research and Technology, for her help, support, advice and offering some facilities needed for the measurements performed in this work.

I am deeply indebted to *Dr. Hany Nazmy*, Physics Department, Faculty of Education, Ain Shams University for his help, fruitful discussions and his persistent interest.

I would like to express my deep thanks to all members of Solid State Physics Laboratory, Faculty of Education, Ain Shams University for their support during this work.

Contents

	Contents	Page
	List of Figures	a
	List of Tables	h
	List of Equations	i
	Abstract	j
	Summary	1
	Published Papers	
	Acceptance Letters	
	CHAPTER I	
	Introduction and Theoretical Background	
1.1.	Deformation of Metals	1
1.2.	Lattice Defects in Crystalline Solids	1
1.3.	Dislocation Motion and Interactions	2
1.4.	Work-Hardening of Metals and Alloys	3
1.4.1.	Mechanisms of Work-Hardening	5
1.5.	Stress-Strain Characteristics	7
1.6.	Mechanical Properties of Metals and Alloys	9
1.6.1.	Modulus of Elasticity	9
1.6.2.	Yield Strength	9
1.6.3.	Ultimate Tensile Strength	10
1.6.4.	Percent Elongation (Ductility)	10
1.7.	Factors Affecting Mechanical Properties	11
1.7.1.	Effect of Strain Rate	11
1.7.2.	Effect of Temperature	12

		Page
1.7.3.	Combined Effect of Strain Rate and	
	Temperature	13
1.8.	Dynamic Recovery	14
1.9.	Stress-Relaxation	14
1.10.	Aluminum Alloys	18
1.10.1.	Al-Si Alloys	20
1.10.2.	Mechanical Properties	21
1.11.	Literature Review	21
1.12.	Aim of the Present Work	41
	CHAPTER II	
	Experimental Techniques and Devices	
2.1.	Samples Preparation	42
2.2.	Heat Treatments	43
2.3.	The Mechanical System	45
2.3.1.	The Components of the Mechanical System	45
(a)	Tensile-Testing Machine	45
(b)	The Force Sensor	47
(c)	The Rotary Motion Sensor	48
(d)	The Science Workshop 500 Interface	49
(e)	The Software (Data Studio Software)	50
2.3.2.	Measurement Technique	50
(a)	Tensile Test	50
(b)	Relaxation Test.	51
2.4.	Scanning Electron Microscope (SEM) and	- -
	Energy Dispersive X – ray Spectroscopy	