Study of Indices Comprising Surrogate Markers of Vitamin D Deficiency

Thesis

Submitted for Partial Fulfillment of Master Degree in Endocrinology & Metabolism

By

Ramy Ahmed Ebrahim El Heggawy

M.B.B.Ch

Supervised by

Prof Dr. Raef Malak Boutros

Professor of Internal Medicine,
Diabetes and Endocrinology
Faculty of Medicine – Ain Shams University

Prof Dr. Manal Mohammed Abo Shady

Professor of Internal Medicine,
Diabetes and Endocrinology
Faculty of Medicine – Ain Shams University

Dr. Basem Murad Mustafa

Lecturer of Internal Medicine,
Diabetes and Endocrinology
Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2017

- All praise are to **Allah** and all thanks. He has guided and enabled me by his mercy to fulfill this essay, which I hope to be beneficial for people.
- I would like to express my deepest gratitude and sincere appreciation to **Prof Dr. Raef Malak Boutros**Professor of Internal Medicine, Diabetes and Endocrinology, Faculty of Medicine, Ain Shams University for his encouragement, his kind support and appreciated suggestions that guided me to accomplish this work.
- I am also grateful to **Prof Dr. Manal Mohammed**Abo Shady Professor of Internal Medicine,
 Diabetes and Endocrinology, Faculty of Medicine, Ain
 Shams University, who freely gave her time, effort and
 experience along with continuous guidance throughout this
 work.
- Mustafa Murad, lecturer of Internal Medicine, Diabetes and Endocrinology, Faculty of Medicine, Ain Shams University for his effort, constant encouragement and advice whenever needed.
- I also wish to introduce my deep respect and thanks to **Dr. Iman**Mohamed Fahmy, for her great assistance and supervision.
- Finally, I would like to express my endless thanks to my dear small family, my lovely wife and for her endless support, And never to forget the great efforts of my parents to reach this moment, God blesses you all.

Contents

Subjects	Page
List of tables	
List of figures	
Introduction	1
Aim of the work	4
Review of literature	
Chapter 1: Vitamin D Physiology and S	Structure4
Chapter 2: Parathyroid Gland & Parath	yroid Hormone28
Chapter 3: Vitamin D Deficiency Disea	ases66
Chapter 4: Diagnosis and Treatment Deficiency	
Subject and methods	107
Results	116
Discussion	150
Summary and conclusion	160
Recommendations	168
Reference	170
Master table	208
Arabic summary	

List of Tables

Table	Title	Page
1	Forms of vitamin D.	5
2	Recommended Dietary Allowance (RDA)	7
	for Vitamin D.	
3	Clinical risk factors for vitamin D	98
	deficiency.	
4	Laboratory and radiographic findings that	99
	suggest possible vitamin D deficiency.	
5	Reference values of vitamin D levels.	110
6	Reference values of PTH levels.	111
7	Correlations using Pearson correlation	115
	analysis.	
8	Descriptive statistics for the whole study	123
	population: Quantitative statistics.	
9	Descriptive statistics for the whole study	124
	population: Qualitative statistics	
10	Relation between vitamin D level and	124
	gender.	
11	Correlation between vitamin D level and	126
	other quantitative variables.	
12	Correlation between PTH and serum	136
	calcium level.	

🕏 List of tables 🗷

Table	Title	Page
13	Linear regression analysis (Model 1) for	138
	prediction of vitamin D level using serum	
	phosphate.	
14	Linear regression analysis (Model 2) for	139
	prediction of vitamin D level using (Total	
	calcium * PO4) /PTH product.	
15	Linear regression analysis (Model 3) for	140
	prediction of vitamin D level using (Ionized	
	calcium * PO4) /PTH product.	
16	Linear regression analysis (Model 4) for	141
	prediction of vitamin D level using (Total	
	calcium * PO4 * Mg) /PTH product.	
17	Linear regression analysis (Model 5) for	142
	prediction of vitamin D level using (Total	
	Ca * PO4 * Cr) /PTH product.	
18	Relation between Vitamin D deficiency and	143
	relevant factors.	
19	Binary logistic regression analysis (model 1)	144
	for prediction of vitamin D deficiency (<20	
	ng/ml).	
20	Binary logistic regression analysis (model 2)	145
	for prediction of vitamin D deficiency (<20	
	ng/ml).	
21	Binary logistic regression analysis (model 3)	146
	for prediction of vitamin D deficiency (<20	
	ng/ml).	

🕏 List of tables 🗷

Table	Title	Page
22	Binary logistic regression analysis (model 4)	147
	for prediction of vitamin D deficiency (<20	
	ng/ml).	
23	Binary logistic regression analysis (model 5)	148
	for prediction of vitamin D deficiency (<20	
	ng/ml).	
24	Binary logistic regression analysis (model 6)	149
	for prediction of vitamin D deficiency (<20	
	ng/ml).	

List of Figures

Fig.	Title	Page
1	Box plot showing the distribution of vitamin	124
	D level in the study population.	
2	Scatter plot showing the correlation	127
	between serum creatinine and vitamin D	
	level.	
3	Scatter plot showing the correlation	128
	between total serum calcium and vitamin D	
	level.	
4	Scatter plot showing the correlation	129
	between serum ionized calcium and vitamin	
	D level.	
5	Scatter plot showing the correlation	130
	between serum magnesium and vitamin D	
	level.	
6	Scatter plot showing the correlation	131
	between PTH and vitamin D level.	
7	Scatter plot showing the correlation	132
	between (total calcium * PO4) product and	
	vitamin D level.	
8	Scatter plot showing the correlation	133
	between (ionized calcium * PO4) product	
	and vitamin D level.	

Fig.	Title	Page	
9	Scatter plot showing the correlation	134	
	between (total calcium * PO4 * Mg)		
	product and vitamin D level.		
10	Scatter plot showing the correlation	135	
	between (total calcium * PO4 * creatinine)		
	product and vitamin D level.		
11	Scatter plot showing the correlation	136	
	between PTH and total serum calcium.		
12	Scatter plot showing the correlation	137	
	between PTH and serum ionized calcium.		

Introduction

Vitamin D deficiency is one of the most common medical conditions in recent times. It is becoming endemic in many parts of the world because of insufficient UVB exposure, urbanization, pollution and traditional clothing preventing UVB reaching skin surface. As a result, wide prevalence of vitamin D deficiency is observed in many countries.

Hypovitaminosis - D is very common in Middle East & Africa and does not spare the pediatric age (*El-Hajj et al.*, 2009). A large proportion of adolescent girls, up to 70% in Iran (*Moussavi et al.*, 2005), 80% in Saudi Arabia (*Siddiqui et al.*, 2007) & 32% in Lebanese girls and between 9% and 12% in Lebanese adolescent boys (*El-Hajj et al.*, 2006). Studies from Saudi Arabia, Kuwait, United Arab Emirates, and Iran reveal that 10–60% of mothers and 40–80% of their neonates had undetectable low vitamin D levels (0–10 ng/mL) at delivery (*Ainy et al.*, 2006).

Pilot Studies about the prevalence of vitamin D in Egypt reveal that; the rate of hypovitaminosis - D in fertile females between (20-50) ys is 80% in Cairo (*Matar*, 2011) and 70% in port-Fouad (*El- Dawoody*, 2011), in old age between (60-70) ys the rate is more than 50% (*Salem*, 2011) and 90% in those over 75ys (*Salem*, 2011) and in pregnant females receiving vitamin D and calcium supplementation the rate is 50 % (*Nady*, 2011).

≥ Introduction \>

Hypovitaminosis- D is typically diagnosed by measuring the concentration of 25-hydroxyvitamin D (calcidiol) in blood, which is a precursor to the active form 1, 25-dihydroxyvitamin D (calcitriol).

The following presents the recent levels considered important in interpretation of 25-hydroxyvitamin D levels:

- Levels <30Nmol/L (<12ng/ml) associated with vitamin D deficiency, leading to rickets in children and osteomalacia in adults.
- Levels from 30-50 Nmol/L (12-20 ng/ml) are generally considered inadequate for bone and overall health in healthy individuals.
- Levels≥50 Nmol/L (≥20ng/ml) are generally considered adequate for bone and overall health in healthy individuals.
- Levels >125Nmol/L (>50ng/ml) are emerging evidence links potential adverse effects to such high levels, particularly > 150 Nmol/L (>60 ng/ml).

(Institute of medicine, 2010)

- Vitamin D deficiency is defined as a 25 (OH) D below 20 ng/ml (50 nmol/liter).
- Vitamin D insufficiency as a 25 (OH) D of 21–29 ng/ml (52.5–72.5) nmol/liter.

(*Holick et al.*, 2011)

Aim of the Work

A discrepancy exists between the cost of diagnosis of vitamin D deficiency and the cost of treatment. For example; measurement of 25 (OH) vitamin D costs about 500 - 600 EGP, on the other hand the cost of 1 injection of 200,000 IU of vitamin D is 10 EGP. Because of the high prevalence of vitamin D deficiency and because of the high cost of diagnosis, surrogate markers are needed to identify the individuals who need vitamin D supplements.

We aim to investigate markers of vitamin D deficiency applicable in large sectors of society at low cost and find a vitamin D deficiency index to diagnose such a widely prevalent condition with reasonable cost benefit ratio.

Vitamin D Physiology and Structure

Vitamin D is a fat-soluble vitamin that is naturally present in very few foods and available as a dietary supplement. It is also produced endogenously when ultraviolet rays from sunlight strike the skin and trigger vitamin D synthesis (*Institute of Medicine*, 2010).

Vitamin D promotes calcium absorption in the gut and maintains adequate serum calcium and phosphate concentrations to enable normal mineralization of bone and to prevent hypocalcemic tetany. It is also needed for bone growth and bone remodeling by osteoblasts and osteoclasts (*Cranney et al.*, 2007).

Vitamin D is important for general good health, and researchers now are discovering that vitamin D may be important for many other reasons outside of good bone health. Some of the functions of the body that vitamin D helps with include:

- Immune system, which helps to fight infection
- Muscle function
- Cardiovascular function, for a healthy heart and circulation
- Respiratory system –for healthy lungs and airways
- Brain development
- Anti-cancer effects

(Feldman et al., 2011)

Table (1): Forms of vitamin D:

Name	Chemical composition		
Vitamin D ₁	Molecular compound of ergocalciferol with		
	lumisterol		
Vitamin D ₂	Ergocalciferol (made from ergosterol)		
Vitamin D ₃	Cholecalciferol (made from 7-Dehydrocholesterol		
	in the skin).		
Vitamin D ₄	22-dihydroergocalciferol		
Vitamin D ₅	Sitocalciferol (made from 7-dehydrositosterol)		

Several forms (vitamers) of vitamin D exist (see table1). The two major forms are vitamin D_2 or ergocalciferol, and vitamin D_3 or cholecalciferol, vitamin D without a subscript refers to either D_2 or D_3 or both. These are known collectively as calciferol (*Dorland's Illustrated Medical Dictionary*, 2013).

Sources of vitamin D

The two main ways to get vitamin D are by exposing bare skin to sunlight and by taking vitamin D supplements. It's hard to get the right amount of vitamin D that body needs from food.

The most natural way to get vitamin D is by exposing bare skin to sunlight (ultraviolet B rays). This can happen very quickly, particularly in the summer. No need to tan or burn skin to get vitamin D. It's just by exposing bare skin for half the time it takes for skin to turn pink and begin to burn. How much vitamin D is produced from sunlight depends on the time of day, location and the skin color. The

more skin exposed the more vitamin D is produced (Holick, 2004).

Factors affecting cutaneous production of vitamin D3:

- The amount of skin exposed: The more skin exposed, the more vitamin D produced.
- Age: skin production of vitamin D inversely related to age.
- Sunscreen: Sunscreen blocks a lot of vitamin D production.
- The altitude: The sun is more intense on top of a mountain than at the beach. This means more vitamin D production at higher altitudes.
- Weather: Less UVB reaches skin on cloudy days and so less vitamin D production.
- Air pollution: Polluted air soaks up UVB or reflects it back into space.
- Glass barriers: Glass blocks all UVB, skin unable to produce vitamin D behind glass barriers.
- Melanin pigment: Melanin protects against skin damage from too much UVB exposure, so darker skins with more melanin allow less UVB to enter the skin. With less UVB getting through the skin, less vitamin D is produced each minute (*Holick & Chen, 2010*).

Very few foods in nature contain vitamin D. The flesh of fatty fish (such as salmon, tuna, and mackerel) and fish liver oils are among the best sources. Small amounts of vitamin D are found in beef liver, cheese, and egg yolks. Vitamin D in these foods is primarily in the form of vitamin D₃ and its metabolite 25 (OH) D₃. Some mushrooms provide vitamin D₂ in variable amounts. Mushrooms with enhanced levels of vitamin D₂ from being exposed to ultraviolet light under controlled conditions are also available (USDA, Agricultural Research Service, 2011)

The Recommended Dietary Allowance (RDA): The RDA for vitamin D is listed in the table below by life stage and gender (*Holick et al.*, 2011).

<u>Table (2):</u> Recommended Dietary Allowance (RDA) for Vitamin D.

Life Stage	Age	Males mcg/day (IU/day)	Females mcg/day (IU/day)
Infants	0-12 months	400 IU	400 IU
Children and Adolescents	1-18 years	600 IU	600 IU
Adults	19-50 years	600 IU	600 IU
Adults	51-70 years	600 IU	600 IU
Adults	71 years and older	800 IU	800 IU
Pregnancy And lactation	all ages	-	1500-2000 IU