

A pharmaceutical study on the pulmonary delivery of an anti-asthmatic drug

A thesis submitted in partial fulfillment of the requirements for Master Degree in Pharmaceutical Sciences (Drug technology).

By

Dalia Mahmoud Hanafy Mahmoud El-baihary

Bachelor of Pharmaceutical Sciences, 2007, Ain Shams University.

Teaching assistant, Department of Pharmaceutics and Industrial Pharmacy, Ain Shams University.

Under supervision of

Prof. Dr. Omaima Ahmed Sammour

Professor of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Ain Shams University.

Dr. Rihab Osman Ahmed

Associate Professor of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Ain Shams University.

Department of Pharmaceutics and Industrial Pharmacy,
Faculty of Pharmacy,
Ain Shams University, Cairo, Egypt.
(2016)

Acknowledgements

First and foremost thanks to God by the grace of whom this work was achieved.

Words are not enough to express my profound gratitude to the ideal mother **Prof. Dr. Omaima Ahmed Sammour**, professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University. I am indebted to her for the great help and effort she devoted for the completion of this thesis, for her instructive supervision, valuable advises continuous guidance, generous attitude and moral support. She deserves special thanks for her insightful comments on the study and methodology considerations.

I am also grateful to **Dr. Rihab Osman Ahmed**, associate Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, for her wisdom, extreme patience, the critical comments, suggestions, valuable advices, efforts for this work, professionalism and encouragement and for pushing me farther than I thought I could go. I owe her a huge debt of gratitude for providing me with a wealth of information and much of material used in this work.

I am greatly thankful to **Dr. Mona Abdel-Mottaleb**, lecturer of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, for her help during administration of intravenous injections to rats in the *in-vivo* study.

I am also very thankful to **Dr. Hend Abdel-bar**, researcher of Pharmaceutics, National Organization for Drug Control and Research, for her help in conducting the *in-vivo* experiments and for always listening and giving me words of encouragement.

I am so much thankful to **Dr. Rania Hathout**, associate professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, for the support she gave me in many ways, throughout my under- and post-graduate career and especially during the accomplishment of this master thesis.

I would like to express my deep thanks to all my colleagues in the Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University. Thanks go to my very honest brother, **Karim Saber**, assistant lecturer of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, for his technical and knowledgeable advice and support.

Dedications

I am forever indebted to my mum, who suffered a lot from my hectic working hours. She has always believed in me and stood by my side for better and for worse. Mum, without your support, this thesis would never have seen the light. This was your dream. I wish I have made you proud and give you part of the joy you have always given me.

List of contents

Topic	Page
List of abbreviations	I
List of tables	IV
List of figures	IX
Abstract	XVIII
General Introduction	1
Scope of work	14
Chapter I: Formulation and characterization of ketotifen/hyal acid microparticles for pulmonary delivery.	luronic
Introduction	16
Experimental	23
Methodology	25
(1) Spectrophotometric assay of KT	25
(1.1) UV Spectrophotometric scanning of KT in different me determination of λ_{max}	dia and
(1.2) Estimation of KT calibration curve in different media	25
(2) Preparation of spray dried KT loaded hyaluronic acid microp (KT-HA MPs)	articles 26
(3) Preparation of KT loaded hyaluronic acid/chitosan microp (KT-HA/CS MPs)	articles 26
(3.1) Experimental design	26
(3.2) Preparation of HA/CS microparticles	27
(4) Characterization of freshly prepared KT-HA/CS dispersions	29
(4.1) Particle size (PS) determination	29

(4.2) KT entrapment efficiency (EE%)	29
(5) Spray dried powders (SDP) characterization	2
(5.1) Powder yield	29
(5.2) Taste evaluation	29
(5.3) Drug content in SDP	30
(5.4) Moisture content	30
(5.5) Powder flow properties	31
(5.6) Particle size determination and mass median aerodyn diameter (MMAD) calculation	amic 32
(6) In-vitro KT release study	33
(7) Mechanism and mathematical modeling of drug release	33
(8) <i>In-vitro</i> swelling studies	35
(9) Drug-polymers interaction study	35
(9.1) Fourier transform-infrared (FT-IR) spectroscopy	35
(9.2) Differential scanning calorimetry (DSC)	35
(9.3) X-ray powder diffraction (XRPD)	36
(10) Morphological examination of MPs	36
(11) In-vitro aerodynamic deposition	36
(12) Determination of storage stability	39
(13) Statistical analysis	39
Results and Discussion	41
(1) Spectrophotometric assay of KT	41
(1.1) UV Spectrophotometric scanning of KT in different media	41
(1.2) Calibration curve of KT in different media	41
(2) Characterization of HA-KT SDP	45

(3) Characterization of KT-HA/CS MPs	47
(3.1) Factorial analysis of entrapment efficiency (EE%) response	48
(4) Characterization of KT-HA/CS spray dried microparticles	55
(4.1) Yield, association efficiency percent and moisture content	55
(4.2) Powder flow properties	56
(4.3) Particle size, particle size distribution and mass me aerodynamic diameter (MMAD)	edian 57
(5) <i>In-vitro</i> release study	59
(5.1) Factorial analysis of release % at 0.5h	63
(5.2) Factorial analysis of T _{80%}	69
(6) Mechanism and mathematical modeling for drug release	75
(7) <i>In-vitro</i> swelling studies	78
(8) Drug/polymers interactions	82
(8.1) FT-IR analysis	82
(8.2) DSC study	87
(8.3) X-ray powder diffraction (XRPD)	89
(9) Morphological examination	91
(10) In-vitro deposition studies using twin stage impinger	98
(11) Storage Stability study of selected SDP	99
Conclusions	101
Chapter II: Formulation and characterization of ketotifen-dext	ran
sulfate nanocomplexes for pulmonary delivery.	
Introduction	104
Experimental	110
Methodology	112

(1) Experimental design	112
(2) Preparation of KT/DS nanocomplexes	114
(3) Nanocomplexes drying	117
(3.1) Nanocomplexes freeze drying	117
(3.2) Nanocomplexes spray drying	117
(4) Particle characterization	118
(4.1) NCs characterization	118
(4.1.1) Particle size (PS) determination	118
(4.1.2) Zeta potential (ζ) determination	118
(4.1.3) Morphological examination	118
(4.1.4) NCs drug complexation efficiency (CE%)	118
(4.1.5) Colloidal stability of freeze dried (FD) NCs	120
(4.2) Spray dried nanocomplexes (SD-NCs) characterization (MPs)	(NCs-in- 120
(4.2.1) Spray dried powder yield	120
(4.2.2) Taste evaluation	120
(4.2.3) Powder flow properties	120
(4.2.4) Moisture content	121
(4.2.5) Particle size (PS) determination and calculation median aerodynamic diameter (MMAD)	of mass
(4.2.6) Drug content in spray dried powders (SDP)	121
(4.2.7) Scanning electron microscope (SEM)	121
(4.2.8) Recovery of NCs from the microparticles (MPs)	122
(5) Drug-polymer interaction study	122
(5.1) Differential scanning calorimetry (DSC)	122

(5.2) X-ray powder diffraction (XRPD)	122
(5.3) Fourier transform infrared (FT-IR) spectroscopy	122
(6) In-vitro aerodynamic deposition	122
(7) In-vitro KT release study	123
(8) Mechanism and mathematical modeling of drug release	123
(9) Determination of storage stability	124
(10) Statistical analysis	124
Results and Discussion	125
(1) Preparation of KT/DS NCs	125
(1.1) DS solution volume effect	125
(1.2) Effect of pH	127
(1.3) Effect of KT and DS concentration	132
(1.4) Effect of surfactant type and concentration	139
(2) Freeze drying of NCs	146
(2.1) Cryoprotectant type and concentration	147
(2.2) Effect of trehalose (5%w/v) on freeze drying of KT/DS formulae	selected 149
(2.3) Colloidal stability of freeze dried KT/DS NCs	151
(2.3.1) Effect of dispersion medium (deionized water) characteristics of freeze dried NCs	pH or 153
(2.3.2) Effect of dispersion medium ionic strength characteristics of freeze dried NCs	on the
(3) Morphological examination of NCs	160
(3.1) TEM of freshly prepared NCs	160
(4) Spray drying of KT/DS NCs	162

(4.1) Moisture content	167
(4.2) Morphological examination of MPs	167
(4.2.1) SEM imaging of MPs	167
(4.2.2) TEM of NCs recovered from NCs-in-MPs	171
(5) Drug-polymer interaction (complex characterization)	172
(5.1) DSC study	172
(5.2) X-ray powder diffraction (XRPD)	175
(5.3) FT-IR analysis	177
(6) <i>In-vitro</i> deposition studies using twin stage impinger	181
(7) <i>In-vitro</i> KT release study	183
(8) Mechanism and mathematical modeling for drug release	185
(9) Storage stability of SD-KT/DS NCs	186
Conclusions	188
Chapter III: In-vivo evaluation of ketotifen loaded inhalable sp	ray
dried powder formulae.	
Introduction	191
Experimental	195
Methodology	197
(1) Lung deposition of swellable HA/CS SDP (SD-V8)	198
(2)Pharmacokinetic study of KT loaded inhalable spray dried powder	200
(2.1) Assay of KT in rat plasma, bronchoalveolar lavage (BAL) lung homogenate (LH)) and 200
(2.1.1) Chromatographic conditions	200
(2.1.2) Method validation	200
(2.1.2.1) Selectivity	201

(2.1.2.2) Linearity and range	201
(2.1.2.3) Recovery	201
(2.1.2.4) Accuracy and precision	201
(2.1.2.5) Limit of detection (LOD)	202
(2.1.2.6) Limit of quantitation (LOQ)	202
(2.2) Pharmacokinetic study and drug administration	202
(2.3) Biological samples collection	203
(2.4) Pharmacokinetic analysis	204
(2.5) Tissue (lung)-plasma partition of KT	205
(3) Pharmacodynamic study on SD-P6Xb (KT/DS NCs-in-MPs)	205
(3.1) Sensitization and provocation of asthma in rats	205
(3.2) Drug administration	206
(3.3) Pharmacodynamic analysis	207
(3.3.1) Bronchoalveolar lavage (BAL) cell count	207
(3.3.2) Histopathological examination	207
(4) Statistical analysis	208
Results and Discussion	209
(1) Lung deposition and localization of swellable HA/CS SDP	209
(2) Pharmacokinetic study	214
(2.1) UPLC method of ketotifen in different biological samples	214
(2.1.1) Validation of the UPLC method	214
(2.1.1.1) Selectivity	214
(2.1.1.2) Linearity and range	216
(2.1.1.3) Recovery	217

T		C	\sim		
	101	Ω t	IΛ	nte	ents
ட	ust	VI.	ω	\mathbf{I}	. 11 (.)

(2.1.1.4) Accuracy and precision	218
(2.1.1.5) Limit of detection	220
(2.1.1.6) Limit of quantitation	220
(2.2) Pharmacokinetic analysis	221
(2.2.1) Plasma pharmacokinetic parameters	221
(2.2.2) Lung homogenate pharmacokinetic parameters	226
(2.2.3) Lung lavage pharmacokinetic parameters	231
(2.3) Tissue (lung)-plasma partition of KT from all groups	235
(3) Pharmacodynamic study	236
(3.1) Bronchoalveolar lavage (BAL) cell count	236
(3.2) Histopathological examinations	238
Conclusions	242
Summary	244
References	252
Appendix I	
Ethical committee approval for in-vivo studies	
Appendix II	
Published research article	
Arabic summary	1

List of Abbreviations

ANOVA Analysis of variance

AUC Area under the curve

BAL Brochoalveolar lavage

CE Complexation efficiency

CCI Carr's compressibility index

CS Chitosan

C_{max} Maximum ketotifen concentration

CV% Coefficient of variation percent

DS Dextran sulfate

DLS Dynamic light scattering

DSC Differential scanning calorimetry

DMSO Dimethyl sulfoxide

EE Entrapment efficiency

FD Freeze dried

2FI Two-factor interaction

FT-IR Fourier transform infrared spectroscopy

HCl Hydrochloric acid

HGC Hard gelatin capsule

HR Hausner ratio

i.v. intravenous

KT Ketotifen

kV Kilovolt

IR Infrared

LEU leucine

LH Lung homogenate

ln Natural logarithm

LPPs Large porous particles

LOD Limit of detection

LOQ Limit of quantitation

UPLC Ultra performance liquid chromatography

MMAD Mass median aerodynamic diameter

mV Millivolt

Mwt Molecular weight

mW Milliwatt

MPs Microparticles

MS Microspheres

nm Nanometer

NCs Nanocomplexes

ND Not determined

NPs Nanoparticles

NCs-in-MPs Nanocomplexes-in-microparticles

PBS Phosphate buffer solution

P/D Polymer to drug ratio

PDI Polydispersity index

PE Polyelectrolyte

PECs Polyelectrolyte complexes

PEO Polyethylene oxide

pKa Ionization constant

PK Pharmacokinetic

PPO Polypropylene oxide

PS Particle size

 $R_{\%0.5h}$ % release at 0.5 h

RP% Respirable particle percent

RT Respiratory tract

sd Standard deviation

SD Spray dried

SDP Spray dried powders

SE Standard error

SEM Scanning electron microscopy

SI Swelling index

SLN Solid lipid nanoparticles

SS Sum of squares

T_{80%} Time required for 80% release

 $t_{1/2}$ Half-life time

TEM Transmission electron microscope

TGA Thermogravimetric analysis

TLC Total leukocyte count

TSI Twin stage impinger

VMD Volume mean diameter

XRPD X-ray powder diffraction

ζ Zeta potential

 λ_{max} Wavelength of maximum absorption

O Angle of repose