NON-INVASIVE ASSESSMENT OF RENAL ARTERY STENOSIS

Essay

Submitted for Fulfillment of Master Degree in Radiodiagnosis

Rasha Anwar Abd Al-Wahhab
M.B.B.CH
Cairo University

Supervised By

Dr./ Ihab Ismail Ali Bakr

Professor of Radiodiagnosis
Faculty of Medicine
Cairo University

Dr./ Abo El-Magd Mohamed Elbohy

Lecturer of Radiodiagnosis
Faculty of Medicine
Cairo University

Faculty of Medicine Cairo University 2010

ACKNOWLEDGEMENT

First and foremost, thanks to Allah, the most beneficent and most merciful.

I am so grateful and most appreciative to the effort of Prof. Dr. Ihab Ismail Ali Bakr professor of radio-diagnosis, Faculty of Medicine Cairo University. No words can express what I owe him for his endless patience, continuous advice and support.

I wish to express my thanks to Dr. Abo-Elmagd Mohamed Elbohy, lecturer of radiodiagnosis, Faculty of Medicine Cairo University, for his kind assistance and continuous beneficial advice.

Dedication

To my parents, my brothers, my sister, and my friends, with love, for their love.

To my father, for your never-ending support.

Rasha

ABSTRACT

Renal artery stenosis (RAS) is a well-recognized cause of

hypertension and an important cause of progressive renal

insufficiency. In renal transplant patients, RAS is also a cause of

refractory hypertension and allograft dysfunction. Accurate

detection and treatment of clinically relevant stenosis may cure or

improve hypertension and preserve renal function. Current

treatment options include medical therapy, percutaneous renal

artery angioplasty with or without stent placement, or surgical

revascularization.

In cases of RAS, the cause in the vast majority of patients is

atherosclerosis fibromuscular dysplasia or (FMD).

Atherosclerosis accounts for 70% to 90% of cases of RAS and

usually involves the ostium and proximal third of the main renal

artery. FMD is a collection of vascular diseases that affects the

intima, media and adventitia and is responsible for 10% to 30% of

cases of RAS.

Key Words: RAS - FMD - RVHT - IA-DSA

List of Abbreviations

- 3D: Three **D**imensional
- ACE: <u>Angiotensin</u> <u>Converting</u> <u>Enzyme</u>
- AI: Acceleration Index
- ASL: <u>Arterial Spin Labeling</u>
- AT: Acceleration Time
- CE-MRA: <u>Contrast</u> <u>Enhanced</u> <u>Magnetic</u> <u>Resonance</u> <u>Angiography</u>
- CPR: <u>Curved Planar Reformation</u>
- CT: Computed Tomography
- CTA: Computed Tomographic Angiography
- DCE: **D**ynamic **C**ontrast **E**nhanced
- dRI: difference in Resistive Index
- ESP: **E**arly **S**ystolic **P**eak
- FMD: Fibro Muscular Dysplasia
- Gd-BCA: Gadolinium-Based Contrast Agent
- GRE: Gradient Echo sequences
- IA-DSA: Intra Arterial Digital Subtraction Angiography
- IVC: <u>Inferior Vena Cava</u>
- MDCT: <u>Multi</u>Detector Computed Tomography
- MIP: <u>Maximum Intensity Projection</u>
- MPR: MultiPlanar Reformation
- MRA: <u>Magnetic</u> <u>Resonance</u> <u>Angiography</u>
- MRI: <u>Magnetic</u> <u>Resonance</u> <u>Imaging</u>
- NSF: <u>N</u>ephrogenic <u>S</u>ystemic <u>F</u>ibrosis
- PC: Phase-Contrast
- PRF: **P**ulse **R**epetition **F**requency
- PSV: **P**eak **S**ystolic **V**elocity
- RAR: **R**enal artery/**A**ortic velocity **R**atio
- RAS: **R**enal **A**rtery **S**tenosis
- RI: **R**esistance **I**ndex
- RVHT: RenoVascular HyperTension

- SLIP: **S**patial **S**pin **L**abeling **P**ulse
- SSD: Shaded Surface Display
- SSFP: <u>S</u>teady <u>S</u>tate <u>F</u>ree <u>P</u>recession
- TOF: <u>Time Of Flight</u>
 TR: <u>Repetition Time</u>
- TRAS: <u>Transplant</u> <u>Renal</u> <u>Artery</u> <u>Stenosis</u>
- US: <u>U</u>ltra<u>S</u>oun
- VR: Volume Rendering

LIST OF FIGURES

			Pages
Figure	1	Kidney anatomy.	3
Figure	2	Diagrammatic representation of normal renal arterial anatomy.	6
Figure	3	Diagrammatic representation of normal renal venous anatomy.	6
Figure		Diagrammatic representation of accessory renal artery.	6
Figure	5	Coronal volume rendering image shows a circum- aortic left renal vein with retro-aortic and pre-aortic components.	6
Figure	6	Color flow Doppler image demonstrating a duplicated left renal artery.	9
Figure	7	Coronal MIP image demonstrating classic normal renal artery.	9
Figure	8	Coronal volume rendering image shows right accessory renal artery.	9
Figure	9	Diagram shows juxtamedullary nephron and its blood supply.	11
Figure	10	Transverse gray scale image of the abdominal aorta & right renal artery from an anterior abdominal approach.	22
Figure	11	Transverse color Doppler images of right renal artery passing underneath the IVC. (A). showing color Doppler aliasing when using a low PRF. (B). By increasing the PRF the aliasing improved.	22
Figure	12	Transverse color Doppler images of the abdominal aorta, left renal vein and artery.	23
Figure	13	Diagram illustrating the flank approach in which the patient is positioned in a lateral decubitus.	24
Figure		Flank approach images showing the abdominal aorta and origin of both renal. arteries. (A) Grayscale image & (B) color Doppler image.	24
Figure	15	Transverse color Doppler image using the flank approach demonstrating the right renal	25
			Pages
		artery from its origin to the renal hilum.	
Figure	16	(A) Diagram illustrating the flank approach for imaging the intrarenal vasculature in which the patient is positioned in a lateral decubitus, (B) color	25
_		Doppler image of the intrarenal vasculature.	25
Figure	17	Normal Doppler waveforms obtained from the main	

	renal artery (A) & segmental renal artery (B).	27
Figure 18	Normal Doppler waveforms obtained from the main	
	renal artery (A) & aorta (B) to calculate RAR.	28
Figure 19	MIP (A), Axial scan CTA source image (B), MPR	
	(C), and VR (D) show normal left renal artery.	32
Figure 20	Curved MPR (a), VR (b) and MIP (c) images show	35
E: 21	one renal artery to each kidney.	20
Figure 21	Non-contrast enhanced MRA shows proximal renal arterial stenosis.	38
Figure 22	MRA study showing normal anatomic appearance of	41
71 00	both renal arteries.	
Figure 23	CE-MRA with perfusion study in a healthy volunteer (A) & hypertensive patient (B).	45
	Renal CE-MRA with perfusion study in pre	
Figure 24	interventional (A&C) & post interventional	46
	procedures (B&D).	
	Grayscale ultrasound images showing sagittal views	
Figure 25	of the kidney, (A) shows normal kidney echogenicity	47
Eigene 26	& (B) shows abnormal kidney echogenicity.	40
Figure 26	Sonograms of the kidneys in hypertensive patient showing uneven sizes of the kidneys.	48
	Color Doppler images of stenotic right renal artery	
Figure 27	origin, (A) showing post stenotic turbulence & (B)	49
	showing PSV over 600cm/s.	-
Figure 28	The Doppler waveforms obtained from the segmental	
Figure 20	renal arteries show a "tardus parvus" shape.	50
		Pages
	MIP (A), Axial scan CTA source image (B), MPR	
Figure 29	(C), and VR (D) show moderate left renal artery	54
	stenosis.	
E: 20	Oblique MIP (A) & Transverse image (B) of right	
Figure 30	renal artery show proximal stenosis by calcified plaque.	55
Figure 31	MRA study shows the typical "string-of-pearls" sign	
119410 01	suggestive of FMD.	56

LIST OF TABLES

		Pages
Table 1	Normal renal artery indices.	29
Table 2	Parameters of steady state free precession (SSFP) in non CE-MRA.	38

List of Contents

• Introduction & aim of work P. 1	
• Review of literature	
□ Anatomy	
♦ Gross anatomy)
◆ Anatomy of renal artery in different imaging Modalities	,
□ Pathophysiology	0
□ Techniques of different imaging modalities	
♦ Techniques of renal duplex ultrasonography P. 1	19
◆ Techniques of renal multidetector CTA P. 3	
♦ Techniques of renal MRA P. 3	6
□Finding of RAS in different imaging modalities	
♦ (1) Findings of RAS in color duplex	
UltrasonographyP. 4	
♦ (2) Findings of RAS in CTA & MRA P. 5	;2
• Summary P. 6	2
• References P. 6	9
• Arabic summary P. 7	'5

INTRODUCTION & AIM OF WORK

INTRODUCTION

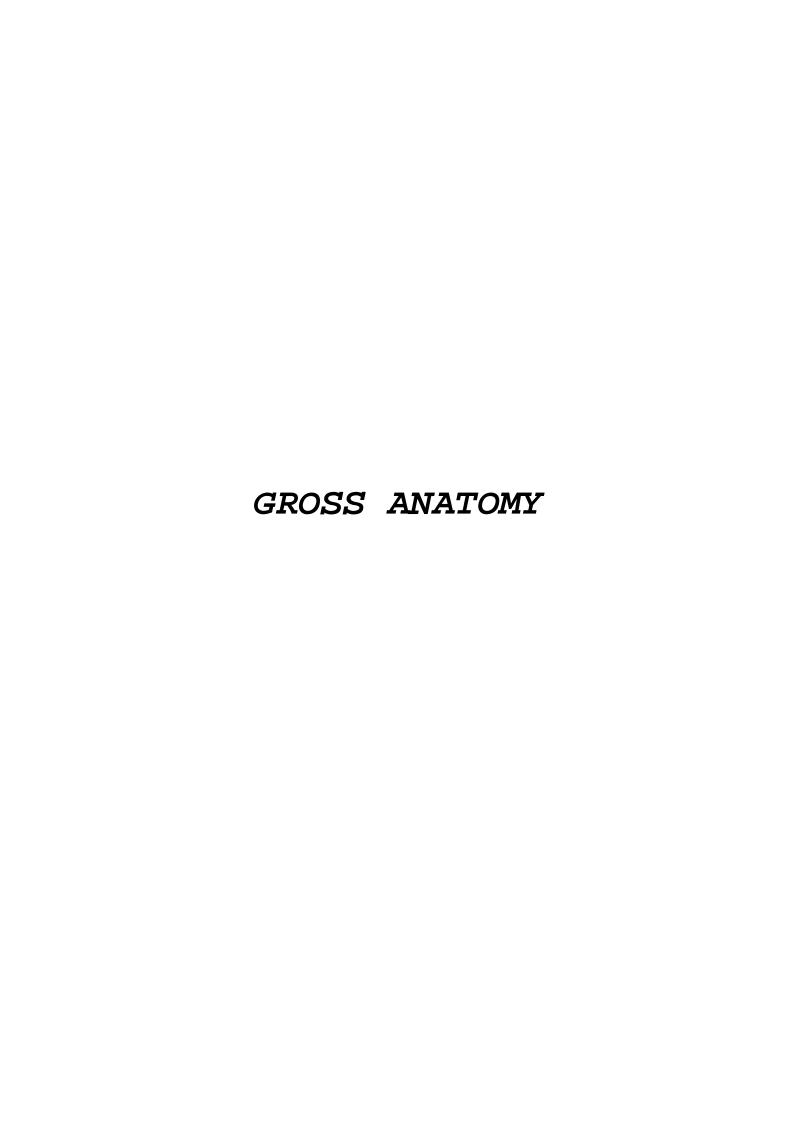
Renal artery stenosis (RAS) is one of the main causes of secondary systemic arterial hypertension while in the vast majority of patients the cause is either atherosclerosis or fibromuscular dysplasia, RAS is a potentially curable cause of secondary hypertension (*Leiner & Michaely*, 2008).

Imaging techniques have an important role in the early discovery of RAS. Although renal angiography is the gold standard for the diagnosis of RAS, it is invasive and causes the potential risk of haematoma, pseudoaneurysm, contrast agent induced nephropathy and atheromatous embolization (*Zeller et al.*, 2008).

Owing to the recent technologic improvements, there is an increasing interest in the use of non-invasive and less invasive imaging procedures such as color duplex ultrasonography, computed tomography angiography (CTA) and magnetic resonance angiography (MRA) for the diagnosis of renovascular hypertension (*Broekhuizen et al.*, 2001).

Color duplex ultrasonography is a non-invasive frequently repeatable bed-side examination and is currently a reliable method to differentiate between a hemodynamically significant and insignificant stenoses using peak systolic velocities, renal artery velocity/aorta velocity ratio (RAR), side-to-side difference of intra-renal resistivity index(RI) and acceleration times (Zeller et al., 2008).

Multidetector CTA has become a principal imaging modality that is commonly used for assessment of renal vasculature and has challenged the role of conventional angiography. It is an excellent imaging technique; being fast and non-invasive tool that provides highly accurate detailed evaluation of renal arteries (*Türkvatan et al.*, 2009).


Gadolinium-enhanced MRA is a sensitive non-invasive modality used in the assessment of clinically significant renal artery stenosis (*Law et al.*, 2008). Recent technical developments in MRA enable the acquisition of isotropic submillimeter spatial resolution data sets, facilitating the detection of renal artery narrowing with high accuracy and demonstrating the functional consequences of RAS, such as a decline in renal perfusion and glomerular filtration (*Leiner & Michaely*, 2008).

AIM OF THE WORK

The aim of the work is to determine and compare the role of color duplex ultrasonography, CTA and MRA as non-invasive imaging techniques in evaluating the possibility of renovascular hypertension and to assess their accuracy in depicting stenosis.

Key words: (RAS, Color duplex ultrasonography, CTA and MRA).

REVIEW OF LITERATURE

