

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Design and Production Engineering

Formability and Rolling of Ductile Iron Subjected to Different Thermo-Mechanical Treatments

A Thesis submitted in partial fulfillment of the requirements of the degree of

Master of Science in Mechanical Engineering

(Design and Production Engineering)

By

Marwan Faisal Zaki Abdelwahed

Bachelor of Science in Mechanical Engineering (Design and Production Engineering) Faculty of Engineering, Ain Shams University, 2014

Supervised By

Prof. Dr. Mohamed Ahmed Taha
Dr. Eman El - Shenawy

Cairo - (2017)

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Design and Production Engineering

Formability and Rolling of Ductile Iron Subjected to Different Thermo-Mechanical Treatments

By

Marwan Faisal Zaki Abdelwahed

Bachelor of Science in Mechanical Engineering (Design and Production Engineering) Faculty of Engineering, Ain Shams University, 2014

Supervising' Committee

Name and Airmation	Signature
Prof. Dr. Mohamed Ahmed Taha Design and Production, Ain Shams University	
Dr. Eman El - Shenawy	
Department of Plastic Deformation, Central	
Metallurgical R&D Institute	

Date:

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Design and Production Engineering

Formability and Rolling of Ductile Iron Subjected to Different Thermo-Mechanical Treatments

By

Marwan Faisal Zaki Abdelwahed

Bachelor of Science in Mechanical Engineering (Design and Production Engineering) Faculty of Engineering, Ain Shams University, 2014

Examiners' Committee

1 4 00011 4

Name and Amiliation	Signature
Prof. Dr. Iman El - Mahallawi Professor of Materials and Metallurgical Engineering, Faculty of Engineering, Cairo University.	
Prof. Dr. Ahmed Moneeb ElSabbagh Professor of Materials and Metallurgical Engineering, Faculty of Engineering, Ain Shams University.	
Prof. Dr. Mohamed Ahmed Taha Professor of Materials and Metallurgical Engineering, Faculty of Engineering, Ain Shams University.	

Date:

a.

Statement

This thesis is submitted as a partial fulfillment of Master of Science in Mechanical Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Signature
Marwan Faisal Zak
Date:

Acknowledgments

This dissertation would not have been possible without the guidance and help of several persons who contributed and extended their valuable assistance in the preparation and completion of this study.

I would like to start by thanking my supervisor Prof. Dr. Mohamed Ahmed Taha for his remarkable patience, helpful comments and enthusiastic support to finalize this work.

Thank are also extended to Dr. Eman El-Shenawy for her constant supervision and help throughout my work and furthermore for providing me with a motivating and warm environment to work in.

Finally, I would like to thank my family, friends and colleagues especially Eng. Alaa Mohsen, Eng. Ahmed Awad and Mr. Mohamed Zaki for their motivation and assurance at hard times.

Researcher Data

Name : Marwan Faisal Zaki Abdelwahed

Date of birth : 22/07/1992

Place of birth : Cairo, Egypt

Last academic degree : Bilateral Bachelor Degree

Field of specialization : Materials Engineering

University issued the degree : Ain Shams University and Clausthal

University of Technology

Date of issued degree : July, 2014

Current job : Demonstrator, Design and Production

Engineering Department, Faculty of Engineering, Ain Shams University at

Cairo, Egypt.

Abstract

Ductile cast iron (DI) is an iron-carbon alloy, in which the structure is composed of graphite nodules embedded in a steel matrix. The thermo-mechanical behavior of ductile cast iron was studied by using the thermomechanical simulator Gleeble-3500 and Dilatometer Dil 805D. This was to predict the rolling condition for producing sheets and strips. The physical simulation of hot rolling process was conducted on specimens at a range of deformation temperatures 950 to 800 °C at three different strain rates; namely 0.05, 0.1 and 0.5 s⁻¹. The results obtained from the tests at the applied strain rates, showed minimum values of compressive stresses at 850 °C. By increasing the deformation temperature up to 900 °C, the compressive stresses increased to reach the maximum values, beyond which the compressive stresses decreased again. Furthermore, remarkable dynamic recrystallization was observed at deformation temperatures of 800 and 850 °C with applied strain rates of 0.05 and 0.1 s⁻¹. Moreover, three deformation hits were successively applied on a test-specimen at temperatures namely; 900, 850 and 750 °C with the same strain rate of 0.1 s⁻¹. No cracks were observed, up to 50% deformation, after the three-consecutive hits. Gleeble test results were correlated with the microstructure observations on the quenched specimens at their deformation temperatures; where the changes in structure and graphite morphology were reported. The results were analyzed so that to determine the suitable rolling conditions required for safe rolling of the ductile iron plates. As a conclusion, ductile iron could be safely rolled at different deformation temperatures and strain rates studied in this work. The rolled sheets and strips exhibit Ferritic - Martensitic structure in which graphite nodules were somewhere elongated.

Keywords:

Ductile Cast Iron, Thermo-mechanical behavior, Gleeble-3500, Hot Rolling, Physical simulation

Table of Content

Acknowledgments	V
Researcher Data	vi
Abstract	vii
Table of Content	viii
List of Figures	x
List of Tables	xiv
List of Abbreviations	
List of Symbols	xii
Chapter 1 : Introduction	1
Chapter 2 : Literature Survey	3
2.1 Cast Iron	4
2.1.1 The Iron-Graphite System	
2.1.2 Types of Cast Iron	
2.2 Ductile Iron	10
2.2.1 Treatment of Ductile Iron	10
2.2.1.1 The Sandwich Cover Process	11
2.2.1.2 The Cored Wire Process	12
2.2.2 Microstructural Phases in Ductile Iron	13
2.2.3 Heat Treatment of Ductile Iron	16
2.2.4 Properties of Ductile Iron	18
2.2.5 Applications of Ductile Iron	20
2.3 Relevant work	21
2.4 Scientific aims and objective	23
2.4.1 Scientific aims	
2.4.2 Objective of this work	23
Chapter 3 : Experimental Work	25
3.1 Material	26
3.2 Experimental Work	26
3.2.1 Differential Dilatometer	26
3.2.2 Heat Treatment of DI-I specimens	27
3.2.3 Thermomechanical Processing	28
3.2.3.1 Gleeble-3500 thermomechanical simulator	28
3.2.3.2 Dilatometer Dil 805D thermomechanical simulator	34
3.2.4 Microstructure Investigation and Phases Identification	
3.2.4.1 Light Optical Microscope	
3.2.4.2 Environmental Scanning Electron Microscope (ESEM) and	Energy Dispersive
X-Ray (EDX)	

	3.2.4.3 Micro-hardness Test	36
	3.2.5 Rolling experiment and Tensile Test	36
Chapte	er 4 : Results and Discussion	37
4.1 [Dilation test and Heat Treatment	38
	4.1.1 Dilation Test	38
	4.1.2 Heat Treatment and Microstructure Investigation	48
4.2 1	Thermo-mechanical behavior of DI	50
	4.2.1 Deformation Behavior of DI-I (CE = 4.48)	50
	4.2.1.1 Single deformation step	50
	4.2.1.1.1 Effect of deformation temperature on thermo-mechanical behavio	r of
	DI-I	50
	4.2.1.1.1 True stress – true strain curves	
	4.2.1.1.1.2 Microstructure Evolution	54
	4.2.1.1.1.3 Elastic Modulus and Proof strength	
	4.2.1.1.1.4 Strain hardening & Dynamic Recrystallization	
	4.2.1.1.2 Effect of applied strain rates on thermo-mechanical behavior of DI-	
	4.2.1.1.2.1 True stress – true strain curves	70
	4.2.1.1.2.2 Elastic Modulus and Proof strength	72
	4.2.1.1.2.3 Strain hardening & Dynamic Recrystallization	
	4.2.1.1.2.4 Microstructure Evolution	77
	4.2.1.2 Successive deformation steps	79
	4.2.2 Deformation Behavior of DI-II (CE = 4.64)	81
	4.2.3 Deformation Behavior of DI-III (CE = 4.35)	83
	4.2.4 Comparison with Previous Data in Literature	85
	4.3 Hot Rolling of Ductile Iron	86
Chapte	er 5 : Conclusion and Future Work	90
5.1	Conclusions	91
5.2	Future work	93
Doforo	ngos	04

List of Figures

Fig. 2.1: Cast iron family [15]	4
Fig. 2.2: Fe-C phase diagram [18]	5
Fig. 2.3: Effect of alloying contents on microstructure of CI [16]	7
Fig. 2.4: Different types of CI & their microstructure at different CR [17]	8
Fig. 2.5: Classification of CI depending on CR [20]	9
Fig. 2.6: Microstructure of pearlitic + ferritic matrix DI [23]	10
Fig. 2.7: Sandwich Cover Process [26]	11
Fig. 2.8: Hollow wires containing Mg metal found in cored wire process [31]	12
Fig. 2.9: Fe-Fe ₃ C: phase diagram with 2% silicon [32]	13
Fig. 2.10: 3.6% C, 1.72% Si and 0.27% Mn [8]	14
Fig. 2.11: Graphite nodules acts as crack-arresters in DI [34]	16
Fig. 2.12: CCT diagram represents annealing, normalizing, and quenching [17]] 17
Fig. 2.13: Mechanical properties & microstructure of DI [40]	19
Fig. 3.1: Treatment schedules applied on differential dilatometer specimen	27
Fig. 3.2: Gleeble test specimen	
Fig. 3.3: Plane view of Gleeble test machine chamber	
Fig. 3.4: Schematic plane view of Gleeble machine chamber	
Fig. 3.5: Schematic presentation of deformation schedules applied on	DI-I
specimens	31
Fig. 3.6: Time – temperature of 2-consecutive hits applied on DI-I	33
Fig. 3.7: (Time – temperature) of 3-consecutive hits applied on DI-II	33
Fig. 3.8: Gleeble test specimen after deformation	
Fig. 3.9: Section A-A & section B-B are directions perpendicular & parallel to	
applied deformation force respectively	34
Fig. 3.10: Dilatometer Dil 805D (Plan view)	
Fig. 4.1 (a): (Relative change in length – Time – Temperature) of T-I	
Fig. 4.1 (b): (Relative change in length – Time – Temperature) of T-II	
Fig. 4.1 (c): (Relative change in length – Time – Temperature) of T-III	
Fig. 4.1 (d): (Relative change in length – Time – Temperature) of T-IV	
Fig. 4.2: Enlarged part from (Relative change in length – Temperature) dur	_
heating for T-I specimen	
Fig. 4.3: Critical transformation temperatures obtained from dilation test dur	
heating are imposed on (Iron – Carbon) phase diagram with 3% Si [54]	
Fig. 4.4 (a): (Relative change in length – Time – Temperature) while soaking o	f T-
I specimen	43

Fig. 4.4 (b): (Relative change in length – Time – Temperature) while soaking of T-
II specimen
III specimen
Fig. 4.4 (d): (Relative change in length – Time – Temperature) while soaking of T-
IV specimen44
Fig. 4.5: Enlarged part form (Relative change in length – Temperature) during cooling of T-I from 950 °C45
Fig. 4.6: Enlarged part form (Relative change in length – Temperature) during cooling of T-III from 850 °C46
Fig. 4.7: Enlarged part form (Relative change in length – Temperature) during cooling of T-IV from 800 °C46
Fig. 4.8 (a): Volume fraction of transformed austenite as function of time47
Fig. 4.8 (b): Volume fraction of transformed austenite as function of temperature
47
Fig. 4.9: Continuous cooling diagram (CCT) of DI-I is imposed on TTT $[55]$ 48
Fig. 4.10: (a), (b), (c), (d) & (e): Microstructures of as-cast, H-I, H-II, H-III & H-IV
respectively
Fig. 4.11: (a): TMB of DI-I at applied strain rate of 0.05 s ⁻¹
Fig. 4.11: (b): TMB of DI-I at applied strain rate of 0.1 s ⁻¹
Fig. 4.11: (c): TMB of DI-I at applied strain rate of 0. $5 s^{-1}$ 52 Fig. 4.12: True stress – true strain curve of DI (CE = 4.8) at different deformation
temperatures with applied strain rate of 10 s-1 in other work [12]53
Fig. 4.13: (a): The obtained microstructure of DI-I specimens in direction
perpendicular to applied force with applied strain rate of $0.05 s^{-1}$ and without
deformation55
Fig. 4.13: (b): The obtained microstructure of the specimens in direction
perpendicular to applied force with applied strain rate of 0.1 $\ensuremath{\text{s}}^{\text{-}1}$ and without
deformation56
Fig. 4.13: (c): The obtained microstructure of the specimens in direction ${\bf r}$
perpendicular to applied force with applied strain rate of 0.5 s ⁻¹ and without
deformation57
Fig. 4.14 (a): The obtained microstructure of DI-I specimens in direction
perpendicular and parallel to applied force with applied strain rate of 0.05 s ⁻¹ .58
Fig. 4.14 (b): The obtained microstructure of DI-I specimens in direction
perpendicular & parallel to applied force with applied strain rate of 0.1 s ⁻¹ 59 Fig. 4.14 (c): The obtained microstructure of DI-I specimens in direction
perpendicular & parallel to applied force with applied strain rate of 0. 5 s ⁻¹ 60
perpendicular a parametro applica force with applica strain rate of 0.3300

Fig. 4.15 (a): ESEM of specimen deformed at 850 °C with applied strain rate of
0.05 s ⁻¹ and EDX analysis of fine ferrite surrounding Gr nodules61
Fig. 4.15 (b): ESEM of specimen deformed at 850 °C with applied strain rate of
0.05 s ⁻¹ and EDX analysis of fine ferrite within matrix62
Fig. 4.15 (c): ESEM of specimen deformed at 850 °C with applied strain rate of
0.05 s ⁻¹ and EDX analysis of fine pearlite transformed after deformation63
Fig. 4.16: (a): ESEM of specimen deformed at 800 °C with applied strain rate of
0.05 s ⁻¹ and EDX analysis of fine ferrite within matrix64
Fig. 4.16: (b): ESEM of specimen deformed at 800 °C with applied strain rate of
0.05 s ⁻¹ and EDX analysis of fine pearlite transformed after deformation65
Fig. 4.17: Effect of deformation temperature on Elastic modulus of DI-I at applied
strain rates of 0.05, 0.1 & 0.5 s ⁻¹ 66
Fig. 4.18: Effect of deformation temperature on the proof strength of DI-I at
applied strain rates of 0.05, 0.1 & 0.5 s ⁻¹ 67
Fig. 4.19: (a): Effect of deformation temperature while applying strain rate of 0.05
s ⁻¹ 68
Fig. 4.19: (b): Effect of deformation temperature while applying strain rate of 0.1
s ⁻¹ 69
Fig. 4.19: (c): Effect of deformation temperature while applying strain rate of 0.5
s ⁻¹ 69
Fig. 4.20: (a): Effect of applied strain rate on TMB of DI-I at 950 °C70
Fig. 4.20: (b): Effect of applied strain rate on TMB of DI-I at 900 °C71
Fig. 4.20: (c): Effect of applied strain rate on TMB of DI-I at 850 °C71
Fig. 4.20: (d): Effect of applied strain rate on TMB of DI-I at 800 °C72
Fig. 4.21: Effect of applied strain rate on Elastic modulus of DI-I at elevated
deformation temperatures of 950, 900, 850 & 800 °C73
Fig. 4.22: Effect of applied strain rate on proof strength of DI-I at elevated
deformation temperatures of 950, 900, 850 & 800°C73
Fig. 4.23: (a): Effect of applied strain rate during deformation process of DI-I at
950 °C75
Fig. 4.23: (b): Effect of applied strain rate during deformation process of DI-I at
900°C75
Fig. 4.23: (c): E Effect of applied strain rate during deformation process of DI-I at
850°C76
Fig. 4.23: (d): Effect of applied strain rate during deformation process of DI-I at
800°C76
Fig. 4.24: True stress true strain curve resulted from two successive deformation
steps at 950 and 900 °C with applied strain rate of 0.1 s $^{\text{-}1}$ 79

Fig. 4.25: Single deformation step & successive deformation steps at 950 & 900
°C with applied strain rate of 0.1 s ⁻¹ 80
Fig. 4.26: Microstructure obtained (DI-I) of single step deformation at 950 °C and
two successive deformation steps at 950 $\&$ 900 $^{\circ}\text{C}$ with applied strain rate of 0.1
s ⁻¹ 80
Fig. 4.27: True stress true strain curve (DI-II) of three successive deformation
steps at 900, 850 & 750 °C with applied strain rate of 0.1 s $^{\text{-}1}$ 82
Fig. 4.28: (a) and (b): Heat treated specimen and thermo-mechanical treated
specimen respectively82
Fig. 4.29: True stress true strain curve of DI-III at 950 $^{\circ}$ C with applied strain rate
of 0.07 s ⁻¹ 83
Fig. 4.30: Two successive deformation steps of DI-III at 950 $\&$ 900 $^{\circ}\text{C}$ with applied
strain rate of 0.07 s ⁻¹ 84
Fig. 4.31: Microstructure obtained (DI-III) of single step deformation at 950 $^{\circ}\text{C}$ and
two successive deformation steps at 950 $\&$ 900 $^{\circ}\text{C}$ with applied strain rate of 0.1
s ⁻¹ 84
Fig. 4.32: Hot deformation behavior of DI-I, D-II and DI-III compared to Kai Qi work
[12]85
Fig. 4.33: Hot deformation behavior of DI-I and DI-II compared to Kai Qi work $[12]$
86
Fig. 4.34: DI-III specimen before and after applying the rolling process87
Fig. 4.35: Stress strain curve of as-rolled specimen 3.9 mm thick (3 steps
reduction, each 20% reduction) and as-cast (received) 12 mm thick specimen.87
Fig. 4.36: Stress strain curve of as-cast specimen & heat treated specimen after
rolling88
Fig. 4.37: Relationship between the reduction (%), ductility and UTS of DI-III in as-
cast and as-rolled condition
Fig. 4.38: (a) and (b): Microstructure of DI-III obtained after rolling process and
subjecting the rolled specimen to heat treatment89

List of Tables

Table 2.1: Classification of CI depending on graphite form [14]	8
Table 2.2: Properties of different grades of DI [40]	19
Table 2.3: Mechanical properties related to DI microstructure [40]	20
Table 3.1: Chemical composition of DI alloys	26
Table 3.2: Treatment procedures on differential dilatometer specimens	27
Table 3.3: DI-I heat treatment schedules	28
Table 3.4: Deformation schedules of DI-I specimens	31
Table 4.1: The SH exponent values calculated form resulted curves	77
Table 4.2: The resulted microstructure of the deformed specimens before ϵ	etching
	78

List of Abbreviations

ASU : Ain Shams University

CCT : Continuous Cooling Transformation

CE : Carbon Equivalent

CI : Cast Iron

CMRDI : Central Metallurgical Research Institute

CR : Cooling Rate

DI : Ductile cast iron

DRX : Dynamic Recrystallization

EDX : Energy Dispersive X-ray Spectroscopy

ESEM : Environmental Scanning Electron Microscope

GCI : Grey Cast Iron

Gr : Graphite

IMET : Institute of Metallurgy

LVDT : Linear Variable Differential Transformer

SH : Strain Hardening

Temp. : Temperature

TMB : Thermomechanical Behavior

TTT : Time Temperature Transformation

TUC : Clausthal University of Technology

UTS : Ultimate Tensile Strength