USE OF B-Type Natriuretic Peptide In The Evaluation And Management Of Acute Dyspnea

Thesis

Submitted in partial fulfillment for the requirement of the Master degree in

Pediatrics

By

Ala'a Mahmoud Nawar

M.B.B.Ch, Ain Shams University, Faculty of Medicine

Under Supervision Of

Professor/ Magda Yahia Al-Seify

Professor of Pediatrics
Faculty of Medicine, Ain Shams University

Doctor/ Mervat Gamal Eldin Mansour

Lecture of Pediatrics
Faculty of Medicine, Ain Shams University

Doctor/ Sherien Ahmed Samy El-Masry

Lecture of Clinical Pathology
Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University

2011

إستخدام الجزء النيتروجيني من الهرمون الأولي للبتيد المدر" للصوديوم في البول نوع بي في تقييم وعلاج حالات صعوبة التنفس

رسالة

توطئة للحصول على درجة الماجستير في طب الأطفال

مقدمة من

الطبيبة/ ألاء محمود نوار بكالوريوس الطب والجراحة

تحت إشراف

أ.د./ ماجدة يحيى الصيفي أستاذ طب الأطفال - كلية الطب - جامعة عين شمس

د./ ميرفت جمال الدين منصور مدرس طب الأطفال - كلية الطب - جامعة عين شمس

د./ شيرين أحمد سامى المصرى مدرس الباثولوجيا الإكلينيكية - كلية الطب - جامعة عين شمس

كلية الطب جامعة عين شمس 2011

SUMMARY

Acute dyspnea is uncomfortable breathing occur within 24hours to 48hours in children but it is difficult to diagnosed as it has many causes.

Etiology of acute dyspnea can differentiated into cardiac, pulmonary and other causes as cardiac causes are more dangerous than others. Sometimes acute dyspnea may be mixed between cardiac and pulmonary this are more dangerous.

Management of acute dyspnea may be delayed until we reach the final diagnosis so we need rapid investigation to diagnose acute dyspnea.

B-type natriuretic peptide is laboratory investigation and is a cardiac neurohormone secreted from the ventricles in response to volume expansion and pressure overloads which can differentiate the causes of acute dyspnea into cardiac and non-cardiac causes fast enough to improve outcomes of patients and cost.

In our study, we measured BNP to 35 patients with acute dyspnea admitted to emergency room

All praise to Allah for guiding and enabling me to fulfill this thesis and surrounding me with mercy.

I want to express my deepest gratitude and sincere appreciation to Prof. Dr. Magda Yahia Al-Seify, Professor of Pediatric, Faculty of Medicine, Ain Shams University for her continuous encouragement and her kind support to accomplish this work.

I am also grateful to Dr. Mervat Gamal Eldin Mansour, Lecturer of Pediatric, Faculty of Medicine, Ain Shams University who freely gave her time, effort and experience along with continuous guidance throughout this work.

Special thanks are extended to Dr. Sherien Ahmed Samy El-Masry, Lecturer of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University for her constant encouragement and advice whenever needed.

Special thanks for my **brothers** for sporting me all times.

Contents

	Page
Introduction	1
Aim of the work	3
Review of literature	4
Chapter One	4
I. Acute dyspnea	4
II. Cardiac causes of acute dyspnea	19
III. Pulmonary causes of acute dyspnea	48
IV. Other causes of acute dyspnea	7 3
Chapter Two	83
B-type Natriuretic peptide	83
Subjects and methods	99
Results	115
Discussion	136
Summary	147
Conclusion	140

Recommendations	150
References	151
Arabic summary	

List of Tables

Table No.	Title	Page
1	Most common causes of acute dyspnea	7
2	Drugs inducing dyspnea related diseases	8
3	The etiology of acute dyspnea	9
4	Differentiating history and physical examination for cardiac and pulmonary causes of acute dyspnea	14
5	Natriuretic peptide origin, stimulus for release and biologic effect	86
6	NT-proBNP levels (in pg/mL) by NYHA functional class	90
7	Natriuretic peptides BNP and NT- proBNP uses in diagnosis of heart failure	93
8	Patient's classification	116
9	Age and gender of studied groups	116

List of Tables (Cont...)

Table No.	Title	Page
10	Comparison between group I and group II according to sex, age	117
11	Comparison between group I and group II according to the vital data	119
12	Symptoms and signs of group I and group II	121
13	Comparison between group I and group II according to Chest X ray	122
14	Comparison between group I and group II according to echocardiograph finding .	123
15	Comparison between cases with acute dyspnea as regards measurement of BNP between group A and C	125
16	Comparison between BNP on day1 for group I and group II	128
17	Comparison between group A and group B according to length of hospital	100
	stay	130

List of Tables (Cont...)

Table No.	Title	Page
18	Comparison between level of BNP at day 3 according to outcome measure of patients of group A	131
19	Comparison between group A and group B according to cost	134

List of Figures

Figure No.	Title	Page
1	Normal chest X-ray	15
2	Normal ECG	15
3	Normal echo	16
4	Acute pulmonary edema, cardiomegaly	47
5	ECG show sinus tachycardia as in pulmonary embolism	47
6	Peak flow meters are used to measure one's peak expiratory flow rate	71
7	Pneumonia as seen on chest x-ray. A: Normal chest X-ray. B: Abnormal chest X-ray with shadowing from pneumonia in the right lung	71
8	Massive left-sided pleural effusion (whiteness)	71
9	Right side spontaneous pneumo-thorax. An arrow is indicating the edge of the collapsed lung	72

List of Figures (Cont...)

Figure No.	Title	Page
10	Chemical structure of natriuretic peptides. Identical amino acid sequence is marked gray	86
11	The regulation and actions of NP	87
12	Sensitivity and specificity of BNP	89
13	Median plasma levels of BNP in patients with heart failure according to their functional class	91
14	Receiver operating characteristic (ROC) curves for BNP to diagnose acute dyspnea	126
15	Receiver Operating Characteristic (ROC) curve to define the best cutoff of BNP in order to detect or predict heart disease	127
16	Plots of BNP on day3 in cases with and without mechanical ventilation	132
17	Plots of BNP on day3 according to fate	132

List of Figures (Cont...)

Figure No.	Title	Page
18	Plots of BNP on day3 according to ICU admission	133
19	Kaplan Meier curves illustrating survival of group A and group B	135

List of Abbreviations

BNP B-type natriuretic peptide

CHF congestive heart failure

shortness of breath

CNP C-type natriuretic peptide

NP natriuretic peptide

RAAS Renin-angiotensin-aldosterone system

ESRD End-stage renal disease

NYHA New York Heart Association Functional

Classification

NEP Neutral end peptidase

NPRs Nutrient peptide receptors

LVH Left ventricular hypertension

AGE1 Angiotensin converting enzyme inhibitors

LV Left ventricular

AMP Adenosine monophosphate

NPR-A 3',5 monophosphate-coupled receptor

CHF Congestive heart failure

SOB Shortness breath

CHD Congenital heart disease

PE Pulmonary embolism

SV Stroke volume

EDV End diastolic volume

EF Ejection fraction

List of Abbreviations

ECG Electrocardiogram

CT Computed tomography

MRI Magnetic resonance imaging

PT prothrombin time

aPTT Activated partial thromboplstin time

TT thromboplastin time
PTP Low pre-test probability

LVADs Left ventricular assist devices

NIPPV Noninvasive positive pressure ventilation

AICD Automatic implantable cardio Venter

CPAP Continuous positive airway pressure

VPAP Variable positive airway pressure

PEEP positive end expiratory pressure

PSP Primary spontaneous pneumothorax

SSP Secondary spontaneous pneumothorax

NAEPP National assume education and prevention

program

LDH Lactate dehydrogenase

SABA Short acting beta₂-adenoreceptor against

LABA Long acting beta agonists

MDL Metered-dose inhalers

RBCs Red blood cells

HBO Hyperbaric oxygen

RR Respiratory rate

HR Heart rate