

Ain Shams University Faculty of Science Biochemistry Department

Effect of ferulic acid and ellagic acid on rats exposed to gamma radiation and aluminum chloride treatment

A thesis submitted in partial fulfillment of the requirements for M.Sc. degree in Biochemistry

Bv

Enas Abdel Moniem Mohamed

B.Sc. in Biochemistry (1998)

Under the supervision of

Prof. Dr. Ahmed Mohamed Salem

Professor of Biochemistry Faculty of Science Ain Shams University

Dr. Tarek Fahmy Mohammaden Dr. Mohamed A. M. Ali

Assistant Professor of Geochemistry **Nuclear Materials Authority**

Lecturer of Biochemistry Faculty of Science Ain Shams University

Faculty of Science Ain Shams University 2016

DEDICATION

This thesis is proudly dedicated to my beloved family

Thanks for your endless love, prayers, sacrifices and support

Enas Abdel Moniem Mohamed

This thesis has not been submitted to this or any other university

Enas Abdel Moniem Mohamed

ACKNOWLEDGEMENT

First of all, cordial thankfulness to "Allah" who enabled me to finish this piece of work appropriately.

I would like to express my deep appreciation and gratitude to *Prof. Dr. Ahmed Mohamed Salem*, Professor of Biochemistry, Faculty of Science, Ain Shams University, for his consistent supervision, constructive suggestions and meticulous scientific help.

My deepest appreciation and thanks are offered to *Dr. Tarek Fahmy Mohammaden*, Assistant Prof. of Geochemistry, Nuclear Materials Authority, for his great support, helpful advice, valuable technical assistance and fruitful comments.

Words are not enough and fail to express my deep thanks and gratitude to *Dr. Mohamed Ahmed Mohamed Ali*, Lecturer of Biochemistry, Faculty of Science, Ain Shams University, for his valuable encouragement, sincere guidance and wholehearted support throughout this work.

Finally, I take this opportunity to express my profound gratitude to *Dr. Hesham Farouk Hassan*, Radiation Biology Department, National Center for Radiation Research and Technology, Atomic Energy Authority, for his support during this work.

Enas Abdel Moniem Mohamed

CONTENTS

	Page
❖ List of Abbreviations	i
❖ List of Figures	iv
List of Tables	ix
❖ Abstract	
❖ Introduction	1
❖ Aim of the work	6
* Review of literature	7
 Radiation 	7
✓ Types of radiation	8
I. Ionizing radiation	8
II.Non-ionizing radiation	11
✓ Biological effects of ionizing radiation	11
I. Direct effects	11
II. Indirect effects	12
✓ Radiation-induced bystander effect	15
✓ Mechanisms of radiation-induced bystander	
effect	16
I. Cell-to-cell communications	16
II. Growth medium-mediated bystander effect	17
✓ Radiation-induced adaptive response	19
Aluminium toxicity	22
✓ Aluminium-induced oxidative damage	23
• Free radicals	25
Biological role of free radicals	28

✓ Production of free radicals	29
✓ Free radicals-induced oxidative damage	32
✓ Free radicals scavenging	34
✓ Oxidative stress and nitrosative stress	34
I. Lipid peroxidation	36
II. Protein oxidation	39
• Antioxidants	42
Classification of antioxidants	43
✓ Antioxidant defense mechanism	58
Mechanism of action of antioxidants	59
✓ Mode of action of antioxidants	59
✓ Natural antioxidants	61
✓ Ellagic acid	62
✓ Ferulic acid	64
❖ Materials and Methods	66
• Experimental animals	66
 Irradiation 	66
 Chemicals 	67
 Animal treatments 	67
 Animal groups 	68
 Blood samples collection 	72
 Preparation of liver tissue homogenate 	72
 Serum biochemical investigations 	73
I. Liver function tests	73
1) Alanine aminotransferase	73
2) Aspartate aminotransferase	74
3) Alkaline phosphatase	76
4) Gamma glutamyl transferase	78
5) Bilirubin	80
II. Lipid profile	82

1) Total cholesterol	82
2) Triglycerides	84
3) High-density lipoprotein cholesterol	87
4) Low-density lipoproteins cholesterol and	
very low density lipoprotein cholesterol	89
Tissue biochemical investigations	89
I. Lipid peroxidation level	89
II. Protein oxidation level	92
III. Endogenous antioxidants	95
1) Catalase	95
2) Glutathione peroxidase	98
3) Superoxide dismutase	102
4) Reduced glutathione	105
IV. Determination of copper, iron and zinc	
concentrations	107
 Histological analysis 	109
 Statistical analysis 	109
* Results	110
 Effect of EA and/or FA administration on 	
liver function tests	110
 Effect of EA and/or FA administration on 	
lipid profile	119
• Effect of EA and/or FA administration on	
lipid peroxidation and protein oxidation	
levels	127
• Effect of EA and/or FA administration on	
antioxidant status	132
• Effect of EA and/or FA administration on	
Cu, Fe and Zn concentrations	139
• Effect of EA and/or FA administration on	
hepatic tissue morphology	145
morphiology	

*	Discussion	153
*	Summary	169
*	References	173
*	Arabic summary	
*	Arabic abstract	

LIST of ABBREVIATIONS

Abbreviation Full name

4-Aminoantipyrine 4-AAP

Al aluminium

 $AlCl_3$ aluminium chloride ALP alkaline phosphatase alanine aminotransferase **ALT** ANOVA one-way analysis of variance AST aspartate aminotransferase **ATP** adenosine-5-triphosphate

CAT catalase Cu copper

copper zinc superoxide dismutase CuZnSOD

direct bilirubin DB **DEA** : diethanolamine **DMSO**

dimethyl sulphoxide DNPH

: 2,4-dinitrophenylhydrazine **DSIC**

: distant cell signaling intercellular

communication

5, 5 dithiobis-2-2 nitrobenzoic acid **DTNB**

EA ellagic acid

ECSOD : extracellular superoxide dismutase ethylene diamine tetra acetic acid **EDTA**

: N-ethyl-N-(hydroxi-3-sulphopropil)-p-**ESPT**

toluidine

: ferulic acid FA

Fe iron

GGT gamma glutamyl transferase

: gap intercellular **GJIC** junctional

communication

GK : glycerol kinase

glycerol phosphate oxidase **GPO**

GPx : glutathione peroxidase
GSH : reduced glutathione
GSSG : oxidized glutathione

Gy : gray

H₂O₂ : hydrogen peroxide

HDL-C : high density lipoprotein cholesterol

HMG-CoA : 3-hydroxy-3-methyl glutaryl coenzyme A

LD : lethal dose

LDH : lactate dehydrogenase

LDL-C : low density lipoprotein cholesterol

LET : linear energy transfer
LPL : lipoproteinlipase
MDA : malondialdehyde
MDH : malate hydrogenase

mGy : milligray

MnSOD : manganese superoxide dismutase

NADPH : nicotinamide adenine dinucleotide

phosphate

NBT : nitroblue tetrazolium
PBS : phosphate buffered saline
PCC : protein carbonyl content

POD : peroxidase

RIAR : radiation-induced adaptive response RIBE : radiation-induced bystander effect

RNS : reactive nitrogen species
ROS : reactive oxygen species

Se : selenium

SEM : standard error of mean SOD : superoxide dismutase

TB : total bilirubin

TBA : thiobarbituric acid

TBARS : thiobarbituric acid reactive substances

TC : total cholesterol

TCA : trichloroacetic acid

TG : triglycerides

TNB : 5-thio-2-nitrobenzoic acid

VLDL-C : very low density lipoprotein cholesterol

${\it LIST of FIGURES}$

Figure	Legend	Page
No.	_	
1	Direct and indirect actions of radiation	14
2	Reactive oxygen species (ROS) and	
	reactive nitrogen species (RNS)	27
3	Free radicals: production and damage	33
4	Mechanism of lipid peroxidation	38
5	Schematic diagram of protein oxidation	41
6	Classification of antioxidants	47
7	Diagrammatic representation of the site of	
	enzymatic and non-enzymatic antioxidant	
	defense system	57
8	A schematic diagram of the mode of action	
	of antioxidants	60
9	Chemical structure of Ellagic acid	63
10	Chemical structure of Ferulic acid	64
11	% change in ALT level compared to the	
	control group	113
12	% change in ALT level compared to AlCl ₃ -	
	treated and/or γ-irradiated groups	113
13	% change in AST level compared to the	
	control group	114
14	% change in AST level compared to AlCl ₃ -	
	treated and/or γ-irradiated groups	114
15	% change in ALP level compared to the	
	control group	115
16	% change in ALP level compared to AlCl ₃ -	
	treated and/or γ-irradiated groups	115
17	% change in GGT level compared to the	
	control group	116
18	% change in GGT level compared to AlCl ₃ -	

	treated and/or γ-irradiated groups	116
19	% change in TB level compared to the	
	control group	117
20	% change in TB level compared to AlCl ₃ -	
	treated and/or γ-irradiated groups	117
21	% change in DB level compared to the	
	control group	118
22	% change in DB level compared to AlCl ₃ -	
	treated and/or γ-irradiated groups	118
23	% change in TC level compared to the	
	control group	122
24	% change in TC level compared to AlCl ₃ -	
	treated and/or γ-irradiated groups	122
25	% change in TG level compared to the	
	control group	123
26	% change in TG level compared to AlCl ₃ -	
	treated and/or γ-irradiated groups	123
27	% change in HDL-C level compared to the	
	control group	124
28	% change in HDL-C level compared to	
	AlCl ₃ -treated and/or γ-irradiated groups	124
29	% change in LDL-C level compared to the	
	control group	125
30	% change in LDL-C level compared to	
	AlCl ₃ -treated and/or γ-irradiated groups	125
31	% change in VLDL-C level compared to	
	the control group	126
32	% change in VLDL-C level compared to	
	AlCl ₃ -treated and/or γ-irradiated groups	126
33	% change in MDA level compared to the	
	control group	130
34	% change in MDA level compared to	
	AlCl ₃ -treated and/or γ-irradiated groups	130
35	% change in PCC level compared to the	

	control group	131
36	% change in PCC level compared to AlCl ₃ -	
	treated and/or γ-irradiated groups	131
37	% change in CAT level compared to the	135
	control group	133
38	% change in CAT level compared to AlCl ₃ -	135
	treated and/or γ-irradiated groups	133
39	% change in GPx level compared to the	
	control group	136
40	% change in GPx level compared to AlCl ₃ -	
	treated and/or γ-irradiated groups	136
41	% change in SOD level compared to the	
	control group	137
42	% change in SOD level compared to AlCl ₃ -	
	treated and/or γ-irradiated groups	137
43	% change in GSH level compared to the	
	control group	138
44	% change in GSH level compared to AlCl ₃ -	
	treated and/or γ-irradiated groups	138
45	% change in Cu level compared to the	
	control group	142
46	% change in Cu level compared to AlCl ₃ -	
	treated and/or γ-irradiated groups	142
47	% change in Fe level compared to the	
	control group	143
48	% change in Fe level compared to AlCl ₃ -	
	treated and/or γ-irradiated groups	143
49	% change in Zn level compared to the	
	control group	144
50	% change in Zn level compared to AlCl ₃ -	
	treated and/or γ-irradiated groups	144
51	Histopathological analysis of hepatic	
	sections from control group showing	1 4 -
	normal hepatic architecture	146