

Evaluation of Quality control for Detection of Bacteria Contaminated SPF and Commercial Eggs

A Thesis Presented

By

Sarah Sobhy Abd EL- Aziz Nagy (B.V.Sc., Cairo University, 2007)

For Master Degree In veterinary Medical Science, Microbiology (Bacteriology, Immunology, Mycology)

Under The Supervision of

Prof. Dr. Jakeen Kamal Abdel Haleem El-Jakee

Professor Doctor of Microbiology and vice Dean for graduate studies and researches affairs Faculty of Veterinary Medicine, Cairo University

Prof. Dr. Diaa EL Din Gad Khelfa

Professor Doctor of Poultry Diseases, Department of Poultry and rabbit Diseases, Faculty of Veterinary Medicine, Cairo University

Dr. Mounir Mohamed El-Safty

Chief Researcher and Head of Quality Control of SPF Eggs Dep. In CLEVB

بليالخالخاليا

اَقْرَا بِاسْمِ رَبِّكَ الَّذِي كَلَفَ ﴿ كَلَفَ الْإِنسَانَ مِنْ عَلَفَ الْإِنسَانَ مِنْ عَلَمَ ﴿ الَّذِي عَلَمَ ﴿ الَّذِي عَلَمَ الْإِنسَانَ مَا لَمْ يَعْلَمْ ﴿ الْفَلْمَ ﴿ عَلَمَ الْإِنسَانَ مَا لَمْ يَعْلَمْ ﴿ مَا لَمْ يَعْلَمْ ﴿ صَدَقَ الله العظيم

Name	Sarah Sobhy Abd- Alaziz Nagy	
Nationality	Egyptian	
Date of birth	24-5-1985	
Place of birth	Cairo	
Specification		
Thesis title	Evaluation of Quality control for Detection of Bacteria	
	Contaminated SPF and Commercial Eggs	
Supervisors:	Prof. Dr. Jakeen Kamal Abdel Haleem EL-Jakee Professor	
	Doctor of Microbiology and Vice Dean for graduate studies and	
	researches affairs Faculty of Veterinary Medicine, Cairo	
	University.	
	Prof. Dr.Diaa EL Din Gad Khelfa	
	Professor Doctor of Poultry Diseases, Department of Poultry	
	and rabbit Diseases, Faculty of Veterinary Medicine, Cairo	
	University	
	Dr. Mounir Mohamed ElSafty	
	Chief Researcher and Head of Quality Control of SPF Eggs	
	Dep. In CLEVB	

Abstract

Salmonella spp. are one of the major bacterial causes of food borne gastroenteritis. Eggs are most commonly identified as food sources responsible for salmonellosis outbreaks. Mycoplasma gallisepticum is the most economically significant Mycoplasma pathogen of poultry, and has a world-wide distribution in common with other mycoplasmas. The present study aimed to isolate and identify salmonellae and Mycoplasma gallisepticum from hen's eggs, as well as using of PCR for direct identification of the S. Typhimurium, S. Enteritidis and Mycoplasma gallisepticum from eggs. Among salmonellae, the general incidence among the native eggs yolk was 1.3%. While the incidence of salmonellosis among white and brown eggs was 1.2% for both. The 13 Salmonella isolates from the native egg yolk were indicated as 7 S. Typhimurium and 6 S. Enteritidis. From the white eggs, one S. Enteritidis and two S. Typhimurium were isolated from the egg yolk. The brown eggs harbored two S. Enteritidis and one S. Typhimurium. All positive samples were from yolk samples. Using PCR 66 albumin samples were positive for salmonellae (48 S. Enteritidis and 18 S. Typhimurium). Mycoplasmae could be isolated from the examined egg samples. A total of 4%, 2% and 2% were recorded among white, brown and native breed egg samples. All negative samples were retested by PCR. And the results showed that 24 negative yolk samples by culture, biochemical and serological tests gave positive results for Mycoplasma gallisepticum. All examined SPF eggs were free from salmonellae and mycoplasmae.

ALLAH, I don't like the night withought thanking you, I don't like the day withought obedience for you, and there is no happy afterlife withought your pardon, and we won't enjoy paradise withought seeing you, Almighty God.

The Prophet of mercy and the light of the Worlds Peace be upon him, **Prophet Mohammed**.

Dear Mother the secret of my life and success. Dear Father whom I carry his name proudly, my sister Al-Shimaa and brothers Abdel-Aziz, Mohammed and Mohammed Aly I see optimism in their eyes & happiness in their laughter. And Dear Aunt Dr. Fatma moharram for her encouragement and faithful efforts, Dear friends Safwa, Hala, Marwa and Reem.

Thank You All

ACKNOWLEDGMENT

First and always, the prayerful thanks to our Superb Bestower (Al-wahhab) **ALLAH** who gives me the powerful to begins and complete this thesis by his guidance and care. He gives me everything I have and I need.

I would like to express my deep thanks and gratitude to Professor Dr. Jakeen Kamal Abdel Haleem El-Jakee (Professor of Microbiology and Vice Dean for graduate studies and researches affairs Faculty of Veterinary Medicine, Cairo University) under her stimulating supervision, guidance and criticism this work was carried out; I heartily thank her very much for her valuable helps and advice. She gave me the best example what a university professor should be.

I would like to express my deep thanks and gratitude to **Professor Dr. Diaa EL Din Gad Khelfa** (Professor of Poultry Diseases, Poultry and Rabbit Diseases Department Faculty of Veterinary Medicine, Cairo University). Thanks for all you have done to assure that my graduate experience would be a fruitful one.

I would like to express my deep thanks and respect to my general manager **Professor Dr. Mounir El-Safty** (Chief Researcher

and Head of Quality Control of SPF Eggs Dep. In CLEVB) (Central Laboratory for Evaluation of Veterinary Biologics) for his kind supervision, advice, experience, continuous encouragement, valuable help, support and teaching me how to work.

I would like to express my deep thanks to Dr. Hala Mahmoud, Dr. Ghada EL-sadek, Dr. Shreif Maarouf, Dr. Eman Antar, Dr. Marwa Fathy and Dr. Safwa Zaghloul For their attributes and help during the work.

Thanks to all members of microbiology in faculty of veterinary medicine, Cairo University.

At last but not least I would like to thank all my colleagues and personnel by their names (Doctors, Technicians and workers) of CLEVB, who giving a hand whenever needed.

CONTENTS

INTRODUCTION	1
REVIEW OF LITERATURE	7
2.1 Salmonella	7
2.1 Salmonella	
Salmonella	7
2.1.2. Public health and economic importance	15
2.1.3. Pathogenesis and pathogenicity	22
2.1.4. Transmission to Egg	28
2.1.5. Identification of <i>Salmonella</i>	32
2.1.5.1. Morphology of the Organism	34
2.1.5.2. Isolation by culture method	36
2.1.5.3. Biochemical identification	51
2.1.5.4. Serological identification	53
2.1.5.5. Identification by PCR Method	59
2.2 Mycoplasma	62
2.2.2. Economic importance and public health	64
2.2.3.Pathogenicity and pathogenesis of <i>Mycoplasma</i>	68
2.2.4. Transmission to Egg	72
2.2.5. Isolation and Identification of Causative Agent	75
2.2.5.1 Morphology of Organism	76
2.2.5.2. Morphology of Colonies	80
2.2.5.3. Culture	84
2.2.5.4. Serology	85
2.2.5.5. Biochemical identification	91
2.2.5.6. Immunological Identification	94
2.2.5.7. Identification by PCR	95
MATERIALS AND METHODS	99
3.1. Materials	99
3.1.1. Salmonella	99
3.1.1.1 Sample collection	99
3.1.1.2. Media used for isolation of salmonellae	
according to ISO 6579	99
enrichment)	99
3.1.1.2.2. Selective enrichment broth	99
3.1.1.2.3. Selective plating media	99
3.1.1.2.4. Nutrient agar plates (Oxoid)	100
3.1.1.2.5. Semisolid nutrient agar medium (0.4%)	100

3.1.1.3. Media used for biochemical identification of	
salmonellae	100
3.1.1.3.1. Tryptone broth (oxoid)	100
3.1.1.3.2. Glucose phosphate broth (oxoid)	100
3.1.1.3.3. Triple Sugar Iron agar medium "TSI"	100
3.1.1.3.4. Christensen's Urea agar medium (Oxoid)	100
3.1.1.3.5. Lysine iron agar medium (oxoid)	100
3.1.1.3.6. Simmons Citrate agar (Oxoid)	100
3.1.1.4. Chemicals and reagents used for biochemical	
identification of salmonellae	100
3.1.1.4.1 Chemicals and reagents used for biochemical	
identification by traditional tests	100
3.1.1.4.2. Kovac's reagent used for indole test	101
3.1.1.4.3. Methyl red solution 0.04% used for Methyl	
red test	101
3.1.1.4.4. Voges-Proskauer reagent.	101
3.1.1.4.5. Urea solution 40% (Oxoid)	101
3.1.1.5. Materials used for biochemical identification	
by API tests.	101
3.1.1.6. Materials used for PCR	101
3.1.1.6.1. Materials used for extraction of DNA	101
3.1.1.6.2. Oligonucleotides used for detection of <i>S</i> .	
Enteritidis and S. Typhimurium	101
3.1.2 Mycoplasma	102
3.1.2.1. Sample collection of Mycoplasma	102
3.1.2.2. Detection of Mycoplasma contamination in	
eggs	102
3.1.2.2.1.Media used for isolation and identification of	103
3.1.2.2.1.1. PPLO broth	103
3.1.2.2.1.2. PPLO agar	103
3.1.2.2.1.3. Frey's broth	103
3.1.2.2.1.4. Frey's agar	103
of Mycoplasma	104
3.1.2.3.1. Medium for Arginine deamination test	104
3.1.2.3.1.2 Glucose fermentation medium	104
3.1.2.3.1.3 Medium for urea hydrolysis test	104
3.1.2.4. Polymerase chain reaction (PCR)	105
3.1.2.4.1. Materials used for Polymerase chain	
reaction (PCR)	105
3.1.2.4.2 Phosphate buffered saline (PBS):	105

3.1.2.4.3. DNA extraction Kits	105
3.1.2.4.4. Oligonucleotide primers encoding 16S	
3.1.2.4.5. PCR Master Mix	106
3.1.2.5. Equipment and instrument used for	
isolation and characterization of	
salmonellae and mycoplasmae	106
3.2 Methods	108
3.2.1 Salmonellae	108
3.2.1.1 Procedures for detection of salmonellae	108
3.2.1.1.1. Stage1: Pre-enrichment in non-selective	
liquid broth	108
3.2.1.1.2. Stage 2: Enrichment in a selective liquid	
broth	108
3.2.1.1.3. Stage 3: Plating out on selective plating	
media	109
3.2.1.1.4. Stage 4: Detection of Salmonella suspected	
colonies.	109
3.2.1.2. Identification of Salmonella isolates	109
3.2.1.2.1. Morphological examination	109
3.2.1.2.2. Biochemical identification	111
3.2.1.3. Detection of salmonellae by PCR	111
3.2.1.3.1. Method for extraction of DNA	111
3.2.1.3.2. DNA amplification	112
3.2.2 Mycoplasmae	113
3.2.2.1 Preparation of the media of <i>Mycoplasma</i>	113
3.2.2.1.1 Preparation of PPLO broth	113
3.2.2.1.2. Preparation of PPLO agar	113
3.2.2.1.3. Preparation of Frey's broth	113
3.2.2.1.4. Preparation of Frey's agar	114
3.2.2.2. Isolation of <i>Mycoplasma</i> species	114
3.2.2.3. Purification of <i>Mycoplasma</i> cultures	115
3.2.2.4. Digitonin sensitivity test	116
3.2.2.5 Glucose fermentation test	116
3.2.2.6 Urea hydrolysis test	117
3.2.2.7 Arginine deamination test	117
3.2.2.8 Film and spot formation	117
3.2.2.9 Detection of <i>M. gallisepticum</i> by PCR	117
3.2.2.9.1 DNA extraction	118
3.2.2.9.2 Amplification of 16S ribosomal RNA gene	118
3.2.2.10 Questionnaire	119
RESULTS	120

4.1. Salmonellae	
4.1.1. Prevalence of the Salmonella serovars recovered	
from the examined eggs	
4.1.2. Prevalence of Salmonella serovars recovered from	
native, brown and white eggs	120
native, brown and white eggs	
recovered from the native eggs	120
recovered from the native eggs	
recovered from the white eggs	122
recovered from the white eggs	
recovered from the brown eggs	124
4.1.2.4. Collective result of the <i>Salmonella</i> serovars	
isolated from the egg yolk of the native, brown	
and white eggs	126
4.1.3. Confirmation of the isolates using multiplex PCR	126
4.1.4. Direct detection of the Salmonella from egg	
albumin using the m-PCR	
4.1.5 Results of Potential risk factors evaluated with a	
questionnaire	
4.2. Mycoplasma	134
4.2.1. Identification of Mycoplasma from the examined	
egg samples by culture technique	134
4.2.2. Detection of Mycoplasma from the examined eggs	135
4.2.3. Identification of Mycoplasma isolates by	
biochemical tests	136
4.2.4. Serological identification of the isolates using	
4.2.4.1. Growth inhibition test (GIT)	
4.2.4.2. Serum plate agglutination (SPA) test	
4.2.5. Detection of M. gallisepticum in egg samples by	
PCR test	
DISCUSSION	140
SUMMARY	155
REFERENCES	159
ARABIC SUMMERY	

LIST OF TABLES

No.	Table		
1	Salmonella enterica subspecies	10	
2	Biochemical investigation of <i>Salmonella</i> Pullorum and <i>S</i> .		
	Gallinarum according to OIE	52	
	Gallinarum according to OIE Biochemical reactions useful in differentiating		
3	Salmonella Gallinarum and S. Pullorum. According to		
	Shivaprasad	53	
4	Characteristics of avian mycoplasmas	91	
5	List of primers used in the multiplex PCR-based assay		
	for the detection of Salmonella species	102	
6	Interpretation of the changes of different biochemical		
0	media.	111	
7	Biochemical differentiation between <i>Mycoplasma</i> species	116	
8	Questionnaire	119	
9	Numbers of salmonellae isolated from the examined eggs	120	
10	Prevalence of different Salmonella serovars from native		
10	Prevalence of different <i>Salmonella</i> serovars from white	121	
11	Prevalence of different Salmonella serovars from white		
11	eggs	123	
12	Prevalence of different Salmonella serovars from brown		
12	eggs	125	
13	Collective results of the Salmonella serovars isolated		
13	from the egg yolk of the native, brown and white eggs	126	
14	Direct detection of the Salmonella from egg albumin		
17	samples using the m-PCR	128	
	Monitoring risk assessment among the investigated		
15	farms. Risk assessments of salmonellae in eggs and		
	broiler chickens	130	
16	Detection of <i>Mycoplasma</i> from the examined eggs	135	
17	Results of biochemical identification of Mycoplasma		
1/	isolates	136	
18	Detection of <i>M. gallisepticum</i> from Negative culture egg		
10	samples by PCR test	137	

LIST OF FIGURES

No.	Figure	Page
1	Distribution of strong-evidence outbreaks caused by eggs	
	and egg products, by causative agent, in the EU, 2012	1
2	Invasion of intestinal mucosa by Salmonella	15
3	Scheme of the Pathogenesis of Salmonella Enterocolitis and	
	diarrhea	16
4	Selected events in Salmonella pathogenesis and associated	
	virulence genes	18
5	Gross lesions associated with Salmonella Pullorum (A–F)	
	infection in chickens	26
6	Pathogenesis of egg contamination by Salmonella	31
7	Salmonella enterica 2009 Kenneth Todar PhD	35
8	Salmonella Typhi, the agent of typhoid. Gram stain	36
9	Salmonella Enteritidis in color	36
10	Schematic representation of the egg structure	41
11	Salmonella sp. after 24 hours growth on XLD agar	43
12	Salmonella that has been cultured in a tetrathionate	
	enrichment broth, and stained using the direct fluorescent-	
	antibody (FA) technique	44
13	Colonial growth pattern displayed by Salmonella	
	Typhimurium cultured on a Hektoen enteric (HE) agar	44
14	Shows fried egg appearance of the colony with raise central	
	area	77
15	A generalized cell structure of <i>Mycoplasma</i>	78
16	Electron micrograph of thin-sectioned <i>Mycoplasma</i> cells	80
17	Morphology of a typical "fried-egg" Mycoplasma colony	81
18	Colony morphology of <i>M. canadense</i> grown in conventional	
	media (a) and in serum free agar plates (b)	82
19	Mycoplasma colonies shows characteristics fried egg	
	appearance	83
20	appearance	
	species	110
21	Representative of PCR amplification of 16s r RNA, fliC and	
	sefA genes among Salmonella isolates	127
22	Agarose gel electrophoreses showing amplification of 429,	
	559 and 312 bp fragments from the egg albumen samples	128
23	Mycoplasma colonies on PPLO medium after 48 h	134

24	Colonies of <i>Mycoplasma</i> after 72h	134
25	Positive Serum plate agglutination (SPA) test using	
	Mycoplasma gallisepticum hyperimmune serum among the	
	isolates	137
26	Agarose gel electrophoresis of PCR product of egg samples	
	of SPF	138
27	Agarose gel electrophoresis of PCR product of egg yolk	
	samples of white eggs	138
28	Agarose gel electrophoresis of PCR product of egg yolk	
	samples of native egg	139
29	Agarose gel electrophoresis of PCR product of egg yolk	
	samples of brown egg	139

LIST OF ABBREVIATIONS

API	Analytical Profile Index
BFP	bundle-forming pilus
BS	bismuthsulphite agar
CDC	Centers for Disease Control and Prevention
CDC	Communicable Disease Center
CRD	chronic respiratory disease
DCA	desoxycholate-citrate agar
DIASALM	diagnostic semi-solid Salmonella medium
DNA	Deoxy Nucleic Acid
EDTA	Ethylene Diamine Tetraacetic Acid
ELISA	enzyme linked immunosorbent assay
EU	European Union
Fig.	Figure
FT	Fowl typhoid
GIT	Growth inhibition test
HI	Haemagglutination inhibation test
IB	infectious bronchitis
IFA	Indirect fluorocent antibody test
IgM	immunoglobulin M
IP	Immunoperoxidase test
ISO	International Organization of Standardization
LPF	long polar fimbriae
LPS	lipopolysaccharide
MAb	monoclonal antibody
MAbs	monoclonal antibodies
MG	Mycoplasma gallispteicum
MI	Mycoplasma iowe
MKTTn	Mueller-Kauffman Tetrathionate novobicin
m-PCR	Multiplex Polymerase Chain Reaction
MS	Mycoplasma synoviae
MSRV	modified semi-solid Rappaport Vassiliadis
NAD	Nicotinamide adenine dinucleotide
ND-vaccinated	Newcastle disease-vaccinated
NO.	Number
NS	non-selective
OIE	International Office of Epizootics
PBS	Phosphate buffer saline

PCR	Polymerase Chain Reaction
PCR-RV	Polymerase Chain Reaction combined with
	Rappaport- Vassiliadis
PD	Pullorum disease
PEF	plasmid-encoded fimbriae
PPLO	pleuropneumonia-like organism
RAPD	random amplified polymorphic DNA
RBCs	red blood cells
RNA	Ribonucleic acid
RSA	Rabid serum agglutination test
RST	Rabid serum agglutation test
SCV	Salmonella-containing vacuole
SE	Salmonella Enteritidis
SEF14	S. Enteritidis fimbriea antigen 14
SG	Salmonella Gallinarum
SMT	standard microbiological techniques
SP	Salmonella Pullorum
SPA	slide plate agglutination
SPA	Serum plate agglutination
SPF	Spesfic pathogenic free
SPI-1 and -2	Salmonella pathogenicity islands 1 and 2
ST	Salmonella Typhimurium
T3SS	type III secretion systems
TSI	triple sugar iron agar
US	United states
UV	Ultra violet
V-P	Voges-Proskauer
WHO	World Heath Organization
XL	Xylose Lysine