

Evaluation of Anticancer Activity of Fenugreek Seed Aqueous Extract and Diosgenin in Chemically Induced Liver Carcinoma in Male Albino Rats

A Thesis

Submitted for the Award of the Ph.D. of Science in Zoology (Physiology)

By **Hanaa Fathy Abd El-Samie**M.Sc. in Zoology (Physiology) 2010

Supervisors

Prof. Dr. Nadia M. Abd El-Aziz El-Beih

Professor of Physiology, Department of Zoology, Faculty of Science, Ain Shams University

Prof. Dr. Gamal Ramadan Shebl Ramadan

Professor of Immunology, Department of Zoology, Faculty of Science, Ain Shams University

Prof. Dr. Karima Fathy Mahrous

Professor of Genetics, Department of Cell Biology National Research Center

DEDICATION

I would like to dedicate this thesis and all my efforts done the last years to achieve my degree to my precious family, especially my mother, husband and sisters for nursing me with love and support me and teaching me to believe in myself to achieve my dreams. My special dedicate to my son and my daughter for my Prececupation most of time they were needed me beside them.

ACKNOWLEDGMENT

I would like to express my sincere gratitude to **Prof. Dr. Nadia**Mohamed Abd El-Aziz El-Beih, Professor of Physiology,
Department of Zoology, Faculty of Science, Ain Shams
University, for her continuous support to this study and associated
research, for her patience, motivation, and enormous knowledge.
Her guidance helped me in all the time of research and writing of
this thesis. I could not have imagined having a better supervisor
for my personal life and my practical one.

My sincere thanks also goes to **Prof. Dr. Gamal Ramadan Shebl Ramadan**, Professor of Immunology, Department of Zoology, Faculty of Science, Ain Shams University, for his perceptive comments and encouragement, also, for his hard questions which made me extend my research from various points of view. I really cannot express by words how could I thank him for his continuous support, wise guidance, valuable criticism and his trying to solve many difficulties I have met. I also want to thank him for his support by the statistical analysis program.

Prof. Dr. Nadia and Prof. Dr. Gamal designed the plan of this study, they were also directed me to the right path, supporting me in all hard times I faced during working in this study, spending a lot of time advising and learning me the real good writing for this thesis, they also reviewed all the work, and I think without their valuable criticism this work would not be completed.

Many thanks for **Prof. Dr. Karima Fathy Mahrous,** Professor of Genetics, Department of Cell Biology, National Research Centre, for providing me an opportunity to join her experience in molecular part, and gave me an access to the laboratory and research facilities. Without her precious support it would not be possible to conduct this research. Also she provided me with the software needed for analysing the density of the PCR products.

Also, I would like to thank **Prof. Dr. Adel Bakeer Kholoussy**, Professor of Pathology, Faculty of Medicine, Cairo University, and **Dr. Hend Abdelkarem Mohamed**, Zoology Department, Faculty of Science, Ain Shams University, for their assistance in the histopathological part, helping me making the slides, and give a proper comment to each slide.

My deep thanks to **Dr. Enas Ali El-Husseiny**, Zoology Department, Faculty of Science, Ain Shams University, for her guidance and assistant as well as gifting the primers regarding caspase-9 RT-PCR.

This study was partially support by a fund from the Academy of Scientific Research and Technology (PI: Prof. Dr. Nadia Mohamed Abd El-Aziz El-Beih).

My gratitude is also given to the Head of Zoology Department, Faculty of Science, Ain Shams University, as well as to my colleagues and all staff members of the Department of Zoology for their encouragement.

ABSTRACT

Abd El-Samie, Hanaa Fathy

Evaluation of Anticancer Activity of Fenugreek Seed Aqueous
Extract and Diosgenin in Chemically Induced
Liver Carcinoma in Male Albino Rats

Ph.D. in Zoology, Faculty of Science, Ain Shams University Cairo, 2017

Key Words: Albino rats; Antihepatocarcinogenesis activity; Cyclophosphamide; Diethylnitrosamine; Diosgenin; Immunological

cytokines; Oxidative stress and apoptosis; Trigonella foenum-

graecum.

Hepatocellular carcinoma (HCC) is an aggressive cancer. Chronic hepatic inflammation and oxidative stress increases the risk for present study evaluated and compared anticarcinogenesis activity of fenugreek seed (Trigonella foenumgraecum L.) aqueous extract (FSAE, 6 g/kg body weight, orally and daily for 14 weeks) and diosgenin (one of fenugreek seeds active components, 36 mg/kg body weight, orally and daily for 14 weeks) in presence/absence of cyclophosphamide (CP, 20 mg/kg body weight, intraperitoneal injection, twice/week for 6 consecutive weeks starting from the 9th week) in experimentally-induced hepatocellular carcinoma (HCC) in male Wistar albino rats by diethylnitrosamine (100 mg/kg body weight, intraperitoneal injection, once every 2 weeks for 14 consecutive weeks). The results showed that FSAE and diosgenin in presence/absence of CP significantly (P<0.05-0.001) reduced the relative liver weight, the concentration of serum α -fetoprotein, and proinflammatory cytokines (interleukin-1\beta and tumour necrosis factor- α), hepatic glutathione-S-transferase activity, the count of bone marrow micronucleated polychromatic erythrocytes and DNA fragmentation, and improved liver histopathology (in presence of CP only) and functions, as well as downregulated the expression of hepatic caspase-3, caspase-9 and p53 in the HCC

rat model. In addition, FSAE and diosgenin in presence/absence of CP significantly (P < 0.05 - 0.001) increased the body weight, thymus and bone marrow cells density, the concentration of serum albumin and globulins (in presence of CP only), total proteins and the anti-inflammatory cytokine (interleukin-10), hepatic reduced glutathione concentration, and the activity of hepatic antioxidant enzymes (catalase, glutathione peroxidase, glutathione reductase and superoxide dismutase) in the HCC rat model. Generally, the antihepatocarcinogenesis activity of CP plus either FSAE or diosgenin was more than that of CP alone. In conclusion, both **FSAE** and diosgenin reduced hepatocarcinogenesis and augmented the therapeutic activity of CP in the HCC rat model. Possible mechanisms for the anticarcinogenesis activities of FSAE and DIOS shown in the present study in the HCC rat model are their ability to modulate inflammation, oxidative stress, genotoxicity hepatic apoptosis.

LIST OF ABBREVIATIONS

γ-GT	Gamma-glutamyl transferase
4-ОН-СР	4-Hydroxycyclophosphamide
4-OHIle	4-Hydroxyisoleucine
AAP	4-Aminophenazone
ALAT	Alanine aminotransferase
ALP	Alkaline phosphatise
AOM	Azoxymethane
ASAT	Aspartate aminotransferase
Вр	Base pair
b.w	Body weight
CAT	Catalase
cDNA	Complementary deoxyribonucleic acid
CDNB	1-Chloro-2,4-dinitrobenzene
СР	Cyclophosphamide
CYP450	Cytochrome P ₄₅₀
DAD	Diode array detector
DEN	Diethylnitrosamine
DHBS	3,5-Dichloro-2-hydroxybenzene sulfonic acid
DIOS	Diosgenin
dl	Decilitre
DMH	1,2-Dimethyl-hydrazine
DMSO	Dimethylsulfoxide
DNA	Deoxyribonucleic acid
dNTPs	Deoxynucleotide triphosphates

DPA	Diphenylamine
DTNB	5,5`Dithiobis (2-nitrobenzoic acid)
EDTA	Ethylenediamine tetra-acetic acid
ELISA	Enzyme-linked immunosorbent assay
g	Gram
FSAE	Fenugreek seed aqueous extract
GADPH	Glyceraldehyde-3-phosphate dehydrogenase
GPx	Glutathione peroxidise
GR	Glutathione reductase
GSH	Reduced glutathione
GSSG	Oxidized glutathione
GST	Glutathione-S-transferase
НСС	Hepatocellular carcinoma
HPLC	High-performance liquid chromatography
HRP	Horseradish peroxidase
i.p	Intraperitoneal
IL	Interleukin
IU	International unit
KH ₂ PO ₄	Potassium dihydrogen phosphate
LPO	Lipid peroxidation
mg	Milligram
MgCl ₂	Mercuric chloride
MGMT	O6-methylguanine-DNA methyl-transferase
min	Minute
ml	Millilitre

MN	Micronucleus test
MnPCEs	Micronucleated polychromatic erythrocytes
Na ₂ HPO ₄	Disodium hydrogen phosphate
NADPH	Reduced form of nicotinamide adenine di- nucleotide phosphate
NBT	Nitroblue tetrazolium
NF	Nuclear factor
ng	Nanogram
NK	Natural killer
pg	Picogram
PMS	Phenazine methosulphate
RNA	Ribonucleic acid
ROS	Reactive oxygen species
RT-PCR	Reverse transcriptase-polymerase chain reaction
sec	Second
SEM	Standard error of mean
SOD	Superoxide dismutase
TBE	Tris-borate-EDTA
TE	Tris HCl-EDTA
Th	T-helper
TMB	Tetramethylbenzidine
TNF	Tumour necrosis factor
U	Unit

LIST OF TABLES

Table's Number & Title

Page

Materials and Methods

1	Different trials to induce experimental HCC in male albino rats in the present study	28
2	Different groups and doses treatments	31

Results

3	Effects of FSAE and DIOS with/without CP on the body weight change (g) in HCC rat model	54
4	Effects of FSAE and DIOS with/without CP on relative liver weight (g/100g b.w) in HCC rat model	55
5	Effects of FSAE and DIOS with/without CP on bone marrow cell density (10 ⁶ cells) in HCC rat model	59
6	Effects of FSAE and DIOS with/without CP on thymus cell density (10 ⁶ cells/g thymus) in HCC rat model	60
7	Effects of FSAE and DIOS with/without CP on clotting time (sec) in HCC rat model	63
8	Effects of FSAE and DIOS with/without CP on prothrombin time (sec) in HCC rat model	64
9	Effects of FSAE and DIOS with/without CP on serum total protein, albumin and globulins concentrations (g/dl) and albumin/globulins ratio in HCC rat model	68
10	Effects of FSAE and DIOS with/without CP on serum α -fetoprotein concentration (ng/ml) in HCC rat model	72
11	Effects of FSAE and DIOS with/without CP on	76

	serum bilirubin (total, direct and indirect) concentration (mg/dl) in HCC rat model	
12	Effects of FSAE and DIOS with/without CP on the activity (IU/L) of serum enzymatic markers of tissue injury (ALAT, ASAT, ALP and γ-GT) in HCC rat model	80
13	Effects of FSAE and DIOS with/without CP on hepatic non-enzymic and enzymic glutathione system in HCC rat model	84
14	Effects of FSAE and DIOS with/without CP on hepatic catalase enzyme (CAT) activity (U/g protein) in HCC rat model	88
15	Effects of FSAE and DIOS with/without CP on hepatic superoxide dismutase enzyme (SOD) activity (U/g protein) in HCC rat model	89
16	Effects of FSAE and DIOS with/without CP on serum anti-inflammatory and pro-inflammatory cytokines concentrations (pg/ml) in HCC rat model	93
17	Effects of FSAE and DIOS with/without CP on the count of bone marrow MnPCEs in HCC rat model	105
18	Effects of FSAE and DIOS with/without CP on hepatic DNA fragmentation (%) in HCC rat model	109
19	Effects of FSAE and DIOS with/without CP on the expression of hepatic caspase-3, caspase-9 and p53 in HCC rat model	113

LIST OF FIGURES

Figure's Number & Title

Page

Literature Review

1	Chemical structure of diosgenin	8
2	Basic structures of sapogenins: (a) a triterpenoid and (b) a steroid	9
3	Extrinsic and intrinsic caspase activation cascades	15
4	Chemical structure of DEN	18
5	Biotransformation of DEN and mechanism of DNA adduct formation	19
6	Chemical structure of cyclophosphamide	21

Materials and Methods

7	Chromatograms of diosgenin standard (a) and fenugreek	27
	seeds alcoholic extract (b)	

Results

8	Effects of FSAE and DIOS with/without CP on the body weight change (g) and relative liver weight (g/100g b.w) in HCC rat model	56
9	Effects of FSAE and DIOS with/without CP on cell density of central lymphoid organs (bone marrow and thymus) in HCC rat model	61
10	Effects of FSAE and DIOS with/without CP on clotting time (sec) and prothrombin time (sec) in HCC rat model	65
11	Effects of FSAE and DIOS with/without CP on serum total protein, albumin and globulins concentrations (g/dl) and albumin/globulins ratio in HCC rat model	69

 Effects of FSAE and DIOS with/without CP on serum α-fetoprotein concentration (ng/ml) in HCC rat model Effects of FSAE and DIOS with/without CP on serum bilirubin (total, direct and indirect) concentration (mg/dl) in HCC rat model Effects of FSAE and DIOS with/without CP on the activity (IU/L) of serum enzymatic markers of tissue 	77
bilirubin (total, direct and indirect) concentration (mg/dl) in HCC rat model 14 Effects of FSAE and DIOS with/without CP on the activity (IU/L) of serum enzymatic markers of tissue	81
activity (IU/L) of serum enzymatic markers of tissue	
injury (ALAT, ASAT, ALP and γ-GT) in HCC rat model	
15 Effects of FSAE and DIOS with/without CP on hepatic non-enzymic (GSH) and enzymic (GPx, GR and GST) glutathione system in HCC rat model	85
Effects of FSAE and DIOS with/without CP on hepatic catalase (CAT) and superoxide dismutase (SOD) activities (U/g protein) in HCC rat model	90
17 Effects of FSAE and DIOS with/without CP on serum anti-inflammatory (IL-10) and pro-inflammatory (IL-1β and TNF-α) cytokines concentrations (pg/ml) in HCC rat model	
A photograph of liver histopathology of the control group and the CP-treated group	97
19 A photograph of liver histopathology of the FSAE-treated group and the DIOS-treated group	98
20 A photograph of liver histopathology of the HCC group that received vehicle	99
21 A photograph of liver histopathology of the HCC group that received CP	100
A photograph of liver histopathology of the HCC groups that received either FSAE or DIOS	101
23 A photograph of liver histopathology of the HCC	102

	groups that received either FSAE plus CP or DIOS plus CP	
24	Photos of the bone marrow micronucleated poly- chromatic erythrocytes (MnPCEs)	104
25	Effects of FSAE and DIOS with/without CP on the count of bone marrow MnPCEs in HCC rat model	106
26	Agarose gel for hepatic DNA fragmentation	108
27	Effects of FSAE and DIOS with/without CP on hepatic DNA fragmentation (%) in HCC rat model	110
28	Reverse transcriptase polymerase chain reaction (RT-PCR) products of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), caspase-3, caspase-9, and p53	112
29	Effects of FSAE and DIOS with/without CP on the expression of hepatic caspase-3, caspase-9 and p53 in HCC rat model	114

Discussion

30	Antihepatocarcinogenesis mechanisms of fenugreek	129
	seed aqueous extract (FSAE) and diosgenin (DIOS) in	
	DEN-treated rats	

CONTENTS

	Page
Introduction	1
Literature Review	6
Materials and Methods	24
Results	52
Discussion	116
Summary	130
References	133
Arabic Summary	