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Thesis Summary

Fluidic thrust vectoring (FTV) technique is an innovative method to perform thrust
vectoring concept using secondary injection system, to introduce a higher level of
maneuverability capabilities for high-performance supersonic aircraft and provides
controlling abilities in flight regimes where the conventional aerodynamic flight
control technologies lose their effectiveness. FTV is developed to substitute the
currently applied mechanical thrust vectoring (MTV) method which depends on
complex heavy mechanical actuators to deflect the nozzle exit jet from the
centerline to the aimed axis. Dual throat nozzle (DTN) concept is introduced as a
technique to enhance the FTV capability, by performing additional flow separation
control to maximize the differences in pressure inside the nozzle cavity, which is
controlled by injecting secondary flow from injection slot. This technique achieves
large thrust vectoring efficiencies without negative effect on the system thrust ratio.

This study numerically investigates the effected parameters on the DTN concept, to
reach the optimum value for each investigated parameter. The thesis presents the
procedures of geometrical modeling, grid optimization and numerical solution used.
Also the performance of different turbulence models for DTN were investigated
and adjustments were implemented to improve the results of separation inside DTN.
The results were validated with experimental measurements conducted at NASA
Langley center. Results of injection system parameters investigation show
improvement in the thrust vectoring capabilities of DTN to thrust vectoring the exit
jet by angle of 12.8° at optimum nozzle operation conditions of Nozzle pressure
ratio of NPR=4 and injection rate 3%.

Key Words:

Computational fluid dynamics CFD, Thrust vectoring, Fluidic Thrust Vectoring
FTV, Dual Throat Nozzle DTN, Aeronautics, Turbulence model, shear stress
limiter.
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Nomenclature and Abbreviations

Nomenclature

Ae
At
Cd

Cfg ,SYS

Ciim

Lr
Lr:
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Downstream Nozzle exit area
Upstream nozzle throat area
Discharge coefficient

System thrust ratio

Shear stress limiter

Injector slot width

Ideal isentropic primary nozzle thrust
Ideal isentropic secondary injector thrust
Resultant force

Downstream Nozzle exit throat height
Nozzle inlet height

Upstream nozzle throat height
Injection Rate = (ws/(wptws)) %
Turbulent kinetic energy

Cavity length
Diverging section length

Injector slot position (Distance between upstream
nozzle throat and injector slot centerline)

Injector Gap Distance (between upstream nozzle
throat and the near edge of injector slot)

Exterior region : Normal to axis Far Filled
Exterior region : Normal to axis Far Filled
Static pressure

Total pressure

Primary flow total pressure
Freestream static pressure

Mean rate of strain tensor

Nozzle throat edge curvature radius
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Ideal secondary injection weight flow
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Abbreviations

BSL
DTN
FTV
JETF
LaRC
MTV
NASA
NPR
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RNG
SST
STD
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TS

Actual secondary injection weight flow
Axial distance

Cavity Divergent angle
Cavity Convergent angle
Upstream converging angle
Secondary flow injection Angle
Turbulent dissipation rate
Vorticity

Viscosity

Thrust vectoring efficiency
Thrust vector angle

Dynamic viscosity

Dynamic eddy viscosity
Kinematic viscosity
Kinematic eddy viscosity

Specific turbulent dissipation rate = e/k
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Fluidic thrust vectoring
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[ka]
[mm]

[]

[]

[]

[]
[m?/s%]
[s™]
[kg/m?]

[]
[N.s/m?]
[N.s/m2]
[m?/s]
[m?/s]
[s™]

American National Aeronautics and Space Administration

Nozzle pressure ratio

Design Nozzle pressure ratio
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Shear Stress Transport
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