

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING MECHANICAL POWER DEPARTMENT

Numerical Investigation of Design Parameters for Dual Throat Fluidic Thrust Vectoring Nozzle Using Secondary Injection System

A thesis submitted in partial fulfillment of the requirement of the M. Sc. in Mechanical Engineering

By

Rafik Tharwat Labib B Sc. in mechanical power engineering, July 2009.

Supervised by

Prof. Mohamed Abo Elenin El-Samanoudy

Mechanical Power Engineering Department,
Faculty of Engineering
Ain Shams University

Prof. Ahmed Mohamed Reda El-Baz

Mechanical Power Engineering Department, Faculty of Engineering Ain Shams University

Cairo – (2017)

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING MECHANICAL POWER DEPARTMENT

Numerical Investigation of Design Parameters for Dual Throat Fluidic Thrust Vectoring Nozzle Using Secondary Injection System

By

Rafik Tharwat Labib

B Sc. in mechanical power engineering, Faculty of Engineering - Ain Shams University

EXAMENERS COMMITTEE

Name Signature

Prof. Dr. Osama Ezat Abdellatif

Mechanical Power Engineering Department, Faculty of Engineering- Banha University

Prof. Dr. Adel Abd El-Malek El-Ahwany

Mechanical Power Engineering Department, Faculty of Engineering- Ain Shams University

Prof. Dr. Mohamed Abo Elenin El-Samanoudy

Mechanical Power Engineering Department, Faculty of Engineering- Ain Shams University

Prof. Dr. Ahmed Mohammed Reda El-Baz

Mechanical Power Engineering Department, Faculty of Engineering- Ain Shams University

Date: /

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING MECHANICAL POWER DEPARTMENT

Numerical Investigation of Design Parameters for Dual Throat Fluidic Thrust Vectoring Nozzle Using Secondary Injection System

By

Rafik Tharwat Labib

B Sc. in mechanical power engineering, Faculty of Engineering - Ain Shams University

SUPERVISION COMMITTEE

Name	Signature
Prof. Dr. Mohamed Abo Elenin El-Samanoudy	
Mechanical Power Engineering Department,	
Faculty of Engineering- Ain Shams University	
Prof. Dr. Ahmed Mohammed Reda El-Baz	

Mechanical Power Engineering Department, Faculty of Engineering- Ain Shams University

Date:	/	
Date.	/	,

STATEMENT

This thesis is submitted as partial fulfillment of M. Sc. degree in mechanical engineering, Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or qualification at any other scientific entity.

Signature

Rafik Tharwat Labib

Researcher Data

Name : Rafik Tharwat Labib

Date of birth : 14-10-1986

Place of birth : Cairo

Academic Degree : B. Sc. in mechanical power

engineering.

Field of specialization : Mechanical Power Engineering

University issued the degree : Ain Shams University

Date of issued degree : July 2009

Current job : Mechanical Engineer at SHAKER

Consultancy Group

Thesis Summary

Fluidic thrust vectoring (FTV) technique is an innovative method to perform thrust vectoring concept using secondary injection system, to introduce a higher level of maneuverability capabilities for high-performance supersonic aircraft and provides controlling abilities in flight regimes where the conventional aerodynamic flight control technologies lose their effectiveness. FTV is developed to substitute the currently applied mechanical thrust vectoring (MTV) method which depends on complex heavy mechanical actuators to deflect the nozzle exit jet from the centerline to the aimed axis. Dual throat nozzle (DTN) concept is introduced as a technique to enhance the FTV capability, by performing additional flow separation control to maximize the differences in pressure inside the nozzle cavity, which is controlled by injecting secondary flow from injection slot. This technique achieves large thrust vectoring efficiencies without negative effect on the system thrust ratio.

This study numerically investigates the effected parameters on the DTN concept, to reach the optimum value for each investigated parameter. The thesis presents the procedures of geometrical modeling, grid optimization and numerical solution used. Also the performance of different turbulence models for DTN were investigated and adjustments were implemented to improve the results of separation inside DTN. The results were validated with experimental measurements conducted at NASA Langley center. Results of injection system parameters investigation show improvement in the thrust vectoring capabilities of DTN to thrust vectoring the exit jet by angle of 12.8° at optimum nozzle operation conditions of Nozzle pressure ratio of NPR=4 and injection rate 3%.

Key Words:

Computational fluid dynamics CFD, Thrust vectoring, Fluidic Thrust Vectoring FTV, Dual Throat Nozzle DTN, Aeronautics, Turbulence model, shear stress limiter.

Table of Contents

1. Chapter 1: Introduction.	1
1.1. Background	1
1.2. Research Motivation	5
1.3. Thesis objectives	6
1.4. Thesis sections and Overview	6
2. Chapter 2: Literature review.	7
2.1. Introduction	7
2.2. Fluidic thrust vectoring methods	7
2.2.1. Co-flow FTV	7
2.2.2. Counter-flow FTV	8
2.2.3. Throat Shifting FTV	9
2.2.4. Shock Vector Control	10
2.2.5. Combined methods	11
2.2.6. Comparison of Methods	12
2.3. Dual throat nozzle fluidic thrust system design parameters	13
2.3.1. Cavity Divergence Angle (θ ₁)	14
2.3.2. Cavity Convergence Angle (θ ₂)	14
2.3.3. Cavity length (<i>l</i>)	15
2.3.4. Upstream throat height (h _t)	16
2.3.5. Secondary flow injection Angle (φ)	16
2.3.6. Nozzle Pressure Ratio (NPR).	17
2.3.7. Injection rate	18
2.3.8. Effect of freestream Mach number	19

3. Chapter 3: Governing equations and numerical solution	20
3.1. Introduction	20
3.2. Governing Equations	20
3.3. Turbulence Model	23
3.3.1. Standard k - ε Model (k-ε STD)	23
3.3.2. Standard k - ω Model (k-ω STD)	25
3.3.3. Shear Stress Transport k - ω Model $(k$ - ω SST)	31
3.3.4. Baseline k - ω Model (k-ω BSL)	36
3.4. Geometry Modeling	39
3.5. Grid Generation	44
3.6. Boundary condition	52
4. Chapter 4: Results and Discussion.	55
4.1. Introduction	55
4.2. Turbulence models performance for DTN flow behaviour	56
4.2.1. k-ω Model (k-ε STD)	60
4.2.2. Shear Stress Transport k-ω Model (k-ω SST)	63
4.2.3. Baseline k - ω Model (k-ω BSL)	79
4.3. Effect of secondary injection parameters on thrust vectoring	83
4.3.1. Nozzle flow parameters calculations	84
4.3.2. Results of injection system basic geometry	86
4.3.3. Effect of injection slot upstream position (ls)	88
4.3.4. Effect of injection slot width (D _{inj})	93
4.3.5. Effect of injection Angle (φ)	98
4.4. Discussion	101

5. Chapter 5: Conclusions and Recommendations	104
5.1. Conclusions	104
5.2.Recommendations for future work	105
References	106

Nomenclature and Abbreviations

Nomenclature

A_{e}	Downstream Nozzle exit area	$[m^2]$
A_t	Upstream nozzle throat area	$[m^2]$
C_d	Discharge coefficient	
$C_{fg,sys}$	System thrust ratio	
C_{lim}	Shear stress limiter	
\mathbf{D}_{inj}	Injector slot width	[mm]
F_{ip}	Ideal isentropic primary nozzle thrust	[N]
F_{is}	Ideal isentropic secondary injector thrust	[N]
F_R	Resultant force	[N]
he	Downstream Nozzle exit throat height	[mm]
h_n	Nozzle inlet height	[mm]
h_t	Upstream nozzle throat height	[mm]
I_R	Injection Rate = $(w_s/(w_p+w_s))$ %	[%]
k	Turbulent kinetic energy	$[m^2/s^2]$
l	Cavity length	[mm]
l_d	Diverging section length	[mm]
L_{s}	Injector slot position (Distance between upstream nozzle throat and injector slot centerline)	[mm]
L_{g}	Injector Gap Distance (between upstream nozzle throat and the near edge of injector slot)	[mm]
L_{F1}	Exterior region: Normal to axis Far Filled	[mm]
L_{F1}	Exterior region: Normal to axis Far Filled	[mm]
p	Static pressure	$[N/m^2]$
P	Total pressure	$[N/m^2]$
P_{tj}	Primary flow total pressure	$[N/m^2]$
P_{∞}	Freestream static pressure	$[N/m^2]$
S_{ij}	Mean rate of strain tensor	$[s^{-1}]$
\mathbf{R}_1	Nozzle throat edge curvature radius	[mm]
Wip	Ideal primary weight flow	[kg]
Wis	Ideal secondary injection weight flow	[kg]
Wp	Actual primary weight flow	[kg]

$\mathbf{W}_{\mathbf{S}}$	Actual secondary injection weight flow	[kg]
X	Axial distance	[mm]
0.	Cavity Divergent angle	[0]
Θ_1		[°]
Θ_2	Cavity Convergent angle	[°]
θ_{P}	Upstream converging angle	[°]
ф	Secondary flow injection Angle	[°]
3	Turbulent dissipation rate	$[m^2/s^3]$
Ω	Vorticity	$[s^{-1}]$
ρ	Viscosity	$[kg/m^3]$
η	Thrust vectoring efficiency	
δp	Thrust vector angle	[°]
μ	Dynamic viscosity	$[N.s/m^2]$
μt	Dynamic eddy viscosity	[N.s/m2]
ν	Kinematic viscosity	$[m^2/s]$
ν_{t}	Kinematic eddy viscosity	$[m^2/s]$
ω	Specific turbulent dissipation rate = ε/k	$[s^{-1}]$

Abbreviations

BSL	Baseline model
DTN	Dual Throat nozzle
FTV	Fluidic thrust vectoring
JETF	Jet exit Test Facility
LaRC	NASA Langley Research Center
MTV	Mechanical Throat vectoring
NASA	American National Aeronautics and Space Administration
NPR	Nozzle pressure ratio
NPR_D	Design Nozzle pressure ratio
RNG	Renormalization group
SST	Shear Stress Transport
STD	Standard
SVC	Shock vector control
SWTBLI	Shock wave turbulent boundary layer interaction
TS	Throat Shifting

List of figures

Chapter 1, Introduction.		
Figure 1.1.2.1	Vectoring paddles of Pratt & Whitney F199-PW-100 power	
	plant used in Lockheed Martin F22 Raptor	
Figure 1.1.2.2	Vectoring flaps of Pratt & Whitney F100 power plant used in McDonnell Douglas F-15 Eagle	
Figure 1 1 2 2	Vectoring flaps of Eurojet EJ200 power plant used in Euro fighter	
Figure 1.1.2.3	Typhoon.	
Figure 1.1.2.4	Nozzle deflection of Pratt & Whitney F135-PW-100 power plant	
F' 1111	used in Lockheed Martin F-35 Lightning II	
Figure 1.1.4.1.	Schematic of the dual throat fluidic thrust vectoring nozzle	
Chapter 2, litera		
Figure 2.1.	Schematic of a co-flow fluidic thrust vectoring nozzle	
Figure 2.2.	Schematic of a counter-flow fluidic thrust vectoring nozzle.	
Figure 2.3.	Schematic of a throat shifting method	
Figure 2.3.1.	Sketch of geometry design variables for DTN	
	rning equations and numerical solution	
Figure 3.4.1.	Two dimensional DTN design parameters.	
Figure 3.5.1.	Pressure distribution on nozzle upper surface wall for	
	different element sizes	
Figure 3.5.2.	Grid Segments	
Figure 3.5.3.	Mesh Configuration (M-1a)	
Figure 3.5.4.	Mesh Configuration (M-1b)	
Figure 3.5.5.	Mesh Configuration (M-2)	
Figure 3.5.6.	Mesh Configuration (M-3)	
Figure 3.6.1.	Boundaries Conditions Configuration	
Chapter 4, Results and discussion.		
Figure 4.2.1.1.	Predicted Mach number contours, k-ε Model, Geometry GM-	
	1, NPR =4, no-injection.	
Figure 4.2.1.2.	Predicted Mach number contours, PAB3D code, NPR =4, no-injection, by NASA LaRC,	
Figure 4.2.1.3.	Pressure contours, k-ɛ model, Geometry GM-1, NPR =4, no-	
115010 1.2.1.3.	injection,	
Figure 4.2.1.4.	Enlarged upstream throat edge Mach contours,	
	k-ε model, Geometry GM-1, NPR =4, no-injection	
Figure 4.2.1.5.	Enlarged upstream throat edge pressure contours,	
	k-ε model, Geometry M1, NPR =4, no-injection.	

Figure 4.2.1.6.	Static pressure distribution plot, NPR =4, no-injection.
Figure 4.2.1.7.	Mach number plot, NPR =4, no-injection.
Figure 4.2.1.8.	Centerline static pressure distribution plot, NPR =4, no-injection.
Figure 4.2.1.9.	Centerline Mach number plot, NPR =4, no-injection.
Figure 4.2.2.1.	Mach Number Contours, Geometry GM-1, NPR =4, No-Injection, k-ω SST Menter model with Structure
	parameter a ₁ =0.31.
Figure 4.2.2.2.	Enlarged upstream throat edge Mach contours, Geometry GM-1, NPR =4, no-injection. k-ω SST model with Structure parameter a ₁ =0.31.
Figure 4.2.2.3.	Static pressure contours, for geometry GM-1, at NPR =4, using k-ω SST model with structure parameter a ₁ =0.31.
Figure 4.2.2.4.	Upper surface static pressure, for geometry GM-1 at NPR=4, using k-ω SST model with structure parameter a ₁ =0.31.
Figure 4.2.2.5.	Centerline static pressure distribution plot, at NPR =4, geometry GM-1, using k-ω SST model with structure parameter a ₁ =0.31.
Figure 4.2.2.6.	Centerline Mach number plot, at NPR =4, geometry GM-1, using k-ω SST model with structure parameter a ₁ =0.31.
Figure 4.2.2.7.	Combined upper surface pressure distribution for different edge curvature, using k-ω SST Model with Structure parameter a ₁ =0.31.
Figure 4.2.2.8.	Enlarged throat edge Mach contours, k- ω SST model, with throat edge curvature R ₁ =10 [mm], Structure parameter a ₁ =0.31.
Figure 4.2.2.9.	Enlarged throat edge Mach contours, using k-ε STD Model, with throat edge curvature R ₁ =10 [mm].
Figure 4.2.2.10.	Mach Number Contours, using different k- ω SST model, Structure parameters a_1 , with throat edge curvature $R_1=10$ [mm],
Figure 4.2.2.11.	Enlarged throat edge Mach contours, for k-ω SST model different structure parameters a ₁ , with throat edge curvature R ₁ =10 [mm],
Figure 4.2.2.12.	Combined upper surface pressure distribution for different k- © SST model structure parameter a ₁ , with edge curvature R ₁ = 10 [mm].
Figure 4.2.2.13.	Combined of upper surface pressure distribution for k- ϵ STD Model and k- ω SST model of Structure parameter a ₁ =0.34, curved throat edge of R ₁ =10 [mm].

Figure 4.2.3.1.	Predicted Mach number contours for sharp and curved nozzle
11gure 4.2.3.1.	throat, at NPR =4, no-injection, using $k-\omega$ (BSL) model.
Figure 4.2.3.2.	Mach number plot on centerline for sharp and curved nozzle
1 1guic 4.2.3.2.	throat, at NPR =4, no-injection, using $k-\omega$ (BSL) model.
Figure 4.2.3.3.	Static pressure distribution on centerline for sharp and curved
1 igule 4.2.3.3.	nozzle throat, at NPR =4, no-injection, using k-ω (BSL)
	model.
Figure 4.2.3.4.	Upper surface static pressure Distribution for sharp and
1 iguic 4.2.3.4.	curved nozzle throat, at NPR =4, no-injection, using
	k-ω (BSL) model.
Figure 4.3.1.	Secondary system injector parameters
Figure 4.3.2.1.	Comparison of Upper Surface static Pressure Distribution,
1 igule 4.5.2.1.	between experimental and numerical codes.
	Geometry (GM3-L0-D4-A150), NPR =4, Injection rate 3%
Figure 4.3.2.2.	Comparison of lower surface static pressure distribution,
118010 1.3.2.2.	between experimental and numerical codes.
	Geometry (GM3-L0-D4-A150), NPR =4, Injection rate 3%.
Figure 4.3.3.1.	Predicted Mach contours for different injection slot positions
	ls, with injection width $D_{inj} = 0.254$ [mm] and injection angle ϕ
	= 150 [°deg], at NPR =4, Injection rate I _R 3%.
Figure 4.3.3.2.	Enlarged Mach contours for different injection slot positions
	ls , with injection width $D_{inj} = 0.254$ [mm] and injection angle ϕ
	= 150 [°deg], at NPR =4, with Injection rate I _R 3%.
Figure 4.3.3.3.	Vectoring pith angle (δp) performance of different injection
	slot positions l_s , at NPR =4, Injection rate I_R 3%,
	D _{inj} =0.254 [mm], Injection angle 150 °
Figure 4.3.3.4.	Vectoring efficiency (η) performance of different injection
	slot positions <i>l</i> s, at NPR =4, Injection rate I _R 3%,
	D _{inj} =0.254 [mm], Injection angle 150 °
Figure 4.3.3.5.	Nozzle discharge coefficient (Cd) performance of different
	injection slot positions ls , at NPR =4, Injection rate I _R 3%,
	D _{inj} =0.254 [mm], Injection angle 150 °
Figure 4.3.3.6.	System thrust ratio (C _{sys.fg}) performance of different injection
	slot positions ls , at NPR =4, Injection rate I _R 3%,
	D _{inj} =0.254 [mm], Injection angle 150 °
Figure 4.3.4.1.	Predicted Mach contours for different injection slot width <i>ls</i> ,
	with injection width $D_{inj} = 0.254$ [mm] and $lg = 0$ [mm], at
TI	NPR =4, Injection rate I _R 3%.
Figure 4.3.4.2.	Enlarged Mach contours for different injection slot width <i>ls</i> ,
	with injection width $D_{inj} = 0.254$ [mm] and $lg = 0$ [mm], at
	NPR =4, Injection rate I _R 3%.