RIFLE classification as a predictor of short term prognosis in critically ill cirrhotic patient

Thesis

Submitted for the partial fulfillment of master degree in **Internal Medicine**

By

Ahmed Abdul Fattah Abdul Maguid Alsherif M.B., B.CH.

Faculty of Medicine, Cairo University

Under supervision of

Prof. Dr. Ahmed Shawky Alsawaby

Professor of Internal Medicine Faculty of Medicine, Ain Shams University

Prof. Dr. Azza Emam Mohamed

Assistant professor of Internal Medicine Faculty of Medicine, Ain Shams University

Dr. Hesham Mahmoud Hassan Darwish

Lecturer of Internal Medicine Theodor Bilharz Research Institute

> Faculty of Medicine Ain Shams University 2011

رسالة علمية

مقدمة لاستيفاء درجة الماجستير في تخصص الباطنة العامة

مقدمة من

الطبيب / أحمد عبدالفتاح عبدالمجيد الشريف

بكالوريوس الطب والجراحة . كلية الطب . جامعة القاهرة

تحت إشراف

أد/ أحمد شوقي الصوابي

أستاذ الباطنة العامة

كلية الطب . جامعة عين شمس

أم د/ عزة إمام محمد

أستاذ مساعد الباطنة العامة

كلية الطب . جامعة عين شمس

د/ هشام محمود حسن درویش

مدرس الباطنة العامة معهد تيودور بلهارس للأبحاث

> كلية الطب جامعة عين شمس ٢٠١١

Summary

End-stage liver disease is frequently complicated by renal function disturbances. Cirrhotic patients with renal failure admitted to intensive care units (ICUs) have high mortality rates. So, early detection of Acute Kidney Injury (AKI) in these patients is very important to prevent complication and eventually decreases mortality rate.

Most of the commonly used clinical scoring systems evaluate renal function according to the serum creatinine level which is unable to detect AKI in the early stages where the serum creatinine may be low while GFR is markedly reduced since there may not have been sufficient time for the creatinine to accumulate.

The RIFLE (risk of renal failure, injury to the kidney, failure of kidney function, loss of kidney function, and end-stage renal failure) classification was first proposed by the Acute Dialysis Quality Initiative (ADQI) group at the second ADQI conference in Vicenza, Italy, in May 2002, in an attempt to standardize the study of ARF. The RIFLE criteria classify ARF into three groups (risk, injury, and failure) according to changes in SCr and/or urine output and thus can detect small and early injury that might occur to the kidney.

This study was performed on 100 cirrhotic patients admitted to Intensive Care Unit in the hospital of Theodore Bilharz Research Institute. The objective of this study is to identify the association between hospital mortality and RIFLE criteria in critically ill cirrhotic patient. Other scoring systems, including Child score, SOFA score, MELD score and APACHE II score are also used for comparison with the RIFLE classification. The studied population was classified according to the primary outcome of this study (Hospital

It is a great thing to feel success and have the pride of achieving all what is always aspired. First and foremost, thanks to **Allah**, the merciful and most graceful, to whom I relate any success in my life.

I would like to express my sincere gratitude to **Professor Dr. Ahmed Shawky Alsawaby**, Professor of internal medicine, Ain Shams University who has so kindly supervised my thesis, I am deeply grateful to him for his professional advice, his quidance and support.

Words fail to express my deep appreciation and gratefulness to **Professor Dr. Azza Emam Mohamed**, Assistant Professor of Internal medicine, Ain Shams University, for her valuable advice, guidance and encouragement throughout this work. She has generously devoted much of her time for planning and supervising this study. She was patient enough in guiding and supervising me. It was a great honor to work under her supervision.

I'm deeply indebted to the great help offered by **Dr. Hesham Mahmoud Hassan**, Lecturer of Internal medicine, Theodor Bilharz Research Institute, for his honest, keen supervision and scientific support to fulfill this research.

Very special thanks and much regards to **Dr. Maha Mohsen Mohamed** Lecturer of internal Medicine, Ain Shams University for her kindness, encouragement, great help and support.

I would also like to record my thanks and sincere gratitude to my family for their great help and support throughout the work.

Ahmed Alsherif

Index

Contents	Page
1) Acknowledgment	I
2) Index	II
3) Abbreviations	III
4) List of Tables	VI
5) List of Figures	VIII
6) Protocol	X
7) Introduction	1
8) Aim of the work	3
9) Review of Literature	4
* Chapter I : Liver Cirrhosis	4
* Chapter II : Critically Ill Patients	24
* Chapter III : Critically Ill Cirrhotic Patients	35
* Chapter IV : Scoring Systems	58
* Chapter V : RIFLE Classification	74
10) Patients & Methods	82
11) Results	85
12) Discussion	117
13) Summary	130
14) Conclusion	133
15) Recommendations	134
16) References	135
17) Arabic Summary	

List of Abbreviations

AFP : Alpha Feto-Protein
AKI : Acute Kidney Injury

AKIN : Acute Kidney Injury Network

AIDS : Acquired Immunodeficiency Syndrome

Alb : Albumin

ALF : Acute Liver Failure

ALKM: Anti-Liver Kidney and Microsomes

ALP : Alkaline Phosphatase
ALT : Alanine Transaminase
ANA : Antinuclear Antibody,

ANCA: Antineutophil Cytoplasmic Antibody

ANOVA: Analysis of Variance

ANZICS: Australia New Zealand Intensive Care Society **APACHE:** Acute Physiology And Chronic Health Evaluation

APD : Adult Patient DatabaseAPS : Acute Physiology ScoreARF : Acute Renal Failure

ASMA : Antismooth Muscle Antibody

AST : Aspartate Transaminase

AUROC: Area Under Receiver Operation Curve

BIL: Bilirubin

CBC: Complete Blood Count

COPD: Chronic Obstructive Pulmonary Disease

CRF : Chronic Renal FailureCT : Computed Tomography

CTP : Child-Turcotte-Pugh Classification

DIC: Disseminated Intravascular Coagulopathy

DM : Diabetes Mellitus

ECMO: Extra-Corporeal Membrane Oxygenation

ESR : Erythrocyte Sedimentation Rate

ESRD : End Stage Renal Disease
 F_iO₂ : Fraction of Inspired Oxygen
 FSH : Follicle Stimulating Hormone
 GABA : Gamma-Amino-Butyric Acid

List of Abbreviations (Cont.)

GCS : Glasgow Coma Scale

GFR: Glomerular Filtration Rate

GGT : Gamma Glutamyle Transpeptidase

Hb : HemoglobinHBV : Hepatitis B Virus

HCC: Hepatocellular Carcinoma

HCO3 : BicarbonateHct : HematocriteHCV : Hepatitis C Virus

HDU: High Dependency Unit

HH : Hereditary Hemochromatosis.HIV : Human Immune Deficiency Virus

HLA: Human Leukocyte Antigen

HOA : Hypertrophic Osteo-Arthropathy

HRS: Hepatorenal Syndrome

HTN: Hypertension

ICU: Intensive Care Unit

INR : International Normalized RatioLDLT : Living Donor Liver Transplantation

LFTs : Liver Function Tests LH : Luteinizing Hormone

LVP : Large Volume Paracentesis

MAP: Mean Arterial Pressure

MDRD : Modification of Diet in Renal DiseaseMELD : Model for End -Stage Liver Disease

MPM : Mortality Probability ModelsNASH : Non Alcoholic Steato-Hepatitis

NO : Nitric Oxide

NSAIDs: Non Steroidal Anti-Inflammatory Drugs

NYHA: New York Heart Association

OR : Odds Ratio

P-ANCA: Perinuclear Anti-Neutrophil Cytoplasmic Antibody

PaO₂: Arterial Oxygen Tension PAO₂: Alveolar Oxygen Tension

List of Abbreviations (Cont.)

PBC : Primary Biliary Cirrhosis
 PC : Prothrombin Concentration
 PCO₂ : Carbon Dioxide Tension
 PCR : Polymerase Chain Reaction

PGE2: Prostaglandin E2

PLT: Platlets

PSC: Primary Sclerosing Cholangitis

PT : Prothrombin Time
P value : Significance Level
PVD : Portal Vein Diameter

RCTs: Randomized Controlled Trials

RIFLE: Risk-Injury-Failure-Loss of kidney function-End stage

renal disease

ROC : Receiver Operation Curve

RR : Relative Risk

RRT : Renal Replacement Therapy
 SAAG : Serum-Ascites Albumin Gradient
 SAPS : Simplified Acute Physiology Score
 SBP : Spontaneous Bacterial Peritonitis

SCr : Serum CreatinineSO2 : Oxygen Saturation

SOFA: Sequential Organ Failure Assesment

S.D. : Standard Deviation

SGOT : Serum Glutamic Oxaloacetic TransaminaseSGPT : Serum Glutamic Pyruvic Transaminase

TIPS: Transjugular Intrahepatic Portosystemic Shunt

TPO: Thrombopoietin UK: United Kingdom

UNOS: United Network for Organ Sharing

UO : Urine Output

USA: United States of America

WBC's: White Blood Cells

List of Tables

Table	Page
Table (1) Guidance for involving a medical	26
emergency team	
Table (2) Common indication for ICU Admission	27
Table (3) Signs suggestive of failing tissue perfusion	32
Table (4) Neurological considerations in referral to	
intensive care	33
Table (5) Indications for considering renal	
replacement therapy	34
Table (6) Diagnostic Criteria of Hepatorenal	
Syndrome	49
Table (7) Potential Uses of Severity-of-Illness	
Scoring Systems	60
Table (8) APACHE III - Acute Physiology Score	
(APS Score)	64
Table (9) APACHE III Scoring for Neurologic	
Abnormalities	67
Table (10) APACHE III points for Age & Chronic	
Health Evaluation	69
Table (11) Child Pugh Score	73
Table (12) Ages of the studied population	85
Table (13) Number of patients according to RIFLE	86
Table (14) Morbid and Co-morbid conditions	87
Table (15) Laboratory values of the studied	
population	89
Table (16) The mean values of scoring systems	90
Table (17) Mortality in the whole studied population	91

Table	Page
Table (18) Comparative analysis between Non-	
Survivor group and survivor group	93
Table (19) Univariate analysis for laboratory data	97
Table (20) Comparing different scores in Non-	
Survivor and survivor	99
Table (21) Length of hospital stay	100
Table (22) Cut-off points for prediction of mortality	105
Table (23) Predictive vs. descriptive mortality for	
RIFLE	107
Table (24) Predictive vs. descriptive mortality for	
APACHE II	109
Table (25) Predictive vs. descriptive mortality for	
SOFA	111
Table (26) Predictive vs. descriptive mortality for	
MELD	113
Table (27) The relation between scoring systems in	
different RIFLE stages	114

List of Figures

	<u> </u>	
	Figure	Page
Figure (1)	Abdominal U/S shows cirrhotic liver	
	with dilated portal vein	19
Figure (2)	APACHE II score	62
Figure (3)	APACHE II score	63
Figure (4)	APACHE III Scoring for Acid-Base	
	Abnormalities	68
Figure (5)	SOFA score	71
Figure (6)	RIFLE score	81
Figure (7)	Ages of the studied population	85
Figure (8)	Number of patients according to RIFLE	86
Figure (9)	Morbid and Co-morbid conditions (DM)	87
Figure (10)	Morbid and Co-morbid conditions(HTN)	88
Figure (11)	Morbid and Co-morbid conditions (HCC)	88
Figure (12)	The mean values of scoring systems	90
Figure (13)	Mortality in the whole studied population	91
Figure (14)	Mortality according to RIFLE	92
Figure (15)	Comparative analysis between Non-	
	Survivor & survivor (age)	94
Figure (16)	Comparative analysis between Non-	
	Survivor & survivor (gender)	94
Figure (17)	Comparative analysis between Non-	
	Survivor & survivor (DM)	95
Figure (18)	Comparative analysis between Non-	
	Survivor & survivor (HTN)	95
Figure (19)	Comparative analysis between Non-	
	Survivor & survivor (HCC)	96
Figure (20)	Univariate analysis for laboratory data	98
Figure (21)	Comparing different scores in Non-	
	Survivor and survivor	99
Figure (22)	Length of hospital stay	100

Figure	Page
Figure (23) Correlation between RIFLE and hospital	
stay	101
Figure (24) Correlation between APACHE II and	
hospital stay	102
Figure (25) Correlation between SOFA and hospital	
stay	103
Figure (26) Correlation between MELD and hospital	
stay	104
Figure (27) ROC curve for different cut off points	105
Figure (28-A) Log survival function for RIFLE	106
Figure (28-B) Predictive vs. descriptive mortality for	
RIFLE	107
Figure (29-A) Log survival function for APACHE II	108
Figure (29-B) Predictive vs. descriptive mortality for	
APACHE II	109
Figure (30-A) Log survival function for SOFA	110
Figure (30-B) Predictive vs. descriptive mortality for	
SOFA	111
Figure (31-A) Log survival function for MELD	112
Figure (31-B) Predictive vs. descriptive mortality for	113
Figure (32-A) The relation between scoring systems	
in different RIFLE	115
Figure (32-B) The relation between APACHE II in	
different RIFLE	115
Figure (32-C) The relation between SOFA in	
different RIFLE	116
Figure (32-D) The relation between MELD in	
different RIFLE	116

RIFLE Classification as a predictor of short term prognosis in critically ill cirrhotic patient

Introduction:

Liver cirrhosis represents the final common pathway of virtually all chronic liver disease and is characterized by an accumulation of extracellular matrix rich in fibrillar collagen(1).

A feature of liver cirrhosis is the existence of disturbances in systemic circulation characterized by marked arterial vasodilation that occurs principally in the splanchnic circulation and generates a reduction in total peripheral vascular resistance and arterial pressure and a secondary increase in cardiac output. These abnormalities are central to the development of several major complications of cirrhosis, such as hepatorenal syndrome, ascites, spontaneous bacterial peritonitis, dilutional hyponatremia, and hepatopulmonary syndrome. Renal failure is the most clinical relevant of these conditions as its appearance generally indicates very poor prognosis (2, 3, 4, 5).

Elevated serum creatinine (SCr) levels of > 1.3 or 1.5mg/dl have been identified as a predictor of poor prognosis in patients with advanced liver cirrhosis (6).

The common used scoring systems for predicting the outcome in critically ill cirrhotic patients, such as Child-Pugh score (7), Sequential Organ Failure Assessment (SOFA) (8), Model for End-stage Liver Disease (MELD) (9), and Acute Physiology, Age, Chronic Health Evaluation II (APACHE II)(10) evaluate renal function according to the serum creatinine.

The RIFLE (risk of renal failure, injury to the kidney, failure of kidney function, loss of kidney function, and end-stage renal failure) classification was first proposed by the Acute Dialysis Quality Initiative (ADQI) group at the second ADQI conference in Vicenza, Italy, in May 2002, in an attempt to standardize the study of ARF. The RIFLE criteria classify ARF into three groups (risk, injury, and failure) according to changes in SCr and urine output (UO) (11). To date, the RIFLE classification has been applied in critical ill patients receiving renal replacement therapy, cardiac surgery patients, heterogeneous patients from intensive care units (ICUs), heterogeneous population of hospitalized

patients, and unique populations such as patients requiring extracorporeal membrane oxygenation for post-cardiotomy

Aim of the work:

cardiogenic shock(11).

The objective of this study is to identify the association between hospital mortality and RIFLE criteria in critically ill cirrhotic patient.

Other scoring systems, including Child score, SOFA score, MELD score and APACHE II score are also used for comparison with the RIFLE classification.

Patients and Methods:

This study will be performed on 100 cirrhotic patients admitted to Intensive Care Unit in the hospital of Theodore Bilharz Research Institute.

Exclusion criteria are:

- * Pediatric patients \leq 18 years of age.
- * Uremic patients undergoing renal replacement therapy.
- * Patients who had undergone liver transplantation.

The following data will be collected for each patient on the 1st day of admission:

- → Demographics.
- → Reason for ICU admission.
- → Acute diagnosis.
- \rightarrow RIFLE classification.
- → Child score.
- \rightarrow SOFA score.
- \rightarrow MELD score.
- → APACHE II score.

And finally, the duration of hospitalization and the outcome of each patient will be recorded.