

تقييم بيئى لمصادر المياه الجوفية لمنطقة شمال شرق القاهرة

رسالة مقدمة من الطالبة

فاتن عطية على محمد

بكالوريوس علوم الكيمياء والفيزياء ، كلية العلوم - جامعة القاهرة . ٢٠٠٣

لإستكمال متطلبات الحصول على درجة الماجستير في العلوم الكيميائية قسم الكيمياء

كلية العلوم - جامعة القاهرة

Y . . 9

تقييم بيئى لمصادر المياة الجوفية لمنطقة شمال شرق القاهرة

رسالة مقدمة من الطالبة

فاتن عطية على محمد

بكالوريوس علوم الكيمياء والفيزياء ، كلية العلوم- جامعة القاهرة (٢٠٠٣)

لاستكمال متطلبات الحصول على درجة الماجستير في العلوم الكيميائية

قسم الكيمياء كلية العلوم جامعة القاهرة

Y . . 9

تحت إشراف:

أ.د. معتزة خاطر

أستاذ الكيمياء التحليلية ، كلية العلوم - جامعة القاهرة

أ.د. وفاء مصطفى سالم

أستاذ هيدرولوجياً النظائر البيئية ، مركز الأمان النووى - هيئة الطاقة الذرية

د. أحمد فهمى

أستاذ مساعد الكيمياء التحليلية ، كلية العلوم - جامعة القاهرة

ختم الإجازة أجيزت الرسالة بتاريخ / / ٢٠٠٩ موافقة مجلس الكلية / / ٢٠٠٠

موافقة مجلس الجامعة / / ۲۰۰

Environmental Assessment of Groundwater Resources at Northeast Cairo

A Thesis By

Faten Attia Ali Mohamed

B. Sc. (2003)

For

Partial Fulfillment of Master Degree (Analytical Chemistry)

Submitted To

CAIRO UNIVERSITY
FACULTY OF SCIENCE
CHEMISTRY DEPARTMENT

(2009)

To My Family

APPROVAL SHEET FOR SUBMISSION

Title of Thesis:

Environmental Assessment of Groundwater Resources at Northeast Cairo

Name of the Candidate: Faten Attia Ali

This thesis has been approved for submission by the Supervisors:

Signature

1- Prof. Dr. Motaza Mohamed Khater

Professor of Analytical and Inorganic Chemistry, Chemistry Department, Faculty of Science, Cairo University.

2- Prof. Dr. Wafaa Mohamed Salem

Professor of Isotope Hydrology, National Center for Nuclear Safety, Egyptian Atomic Energy Authority.

3- Dr. Ahmed Fahmy A. Youssef

Associate Professor of Analytical Chemistry, Chemistry Department, Faculty of Science, Cairo University.

Prof. Dr. Rifaat Hassan Hilal

Chairman of Chemistry Department Faculty of Science, Cairo University

SUPERVISORS

Prof. Dr. Motaza Mohamed Khater

Professor of Analytical and Inorganic Chemistry, Chemistry Department, Faculty of Science, Cairo University.

Prof. Dr. Wafaa Mohamed Salem

Professor of Isotope Hydrology, National Center for Nuclear Safety, Egyptian Atomic Energy Authority.

Dr. Ahmed Fahmy A. Youssef

Assistant professor of Analytical Chemistry, Chemistry Department, Faculty of Science, Cairo University.

ABSTRACT

Name: Faten Attia Ali

Title of Thesis:

Environmental Assessment of Groundwater Resources at Northeast Cairo

<u>Degree: (M. Sc.)</u>, the degree of Master of Science in Analytical Chemistry, Faculty of Science, Cairo University, 2009.

The aim of the present study is to evaluate the water quality of surface water and groundwater of the Northern east part of Cairo and to identify the sources of pollution (salinization, nutrients, and trace elements), also to simulate the hydrological system and its responses with regard to contaminant transport. The results are based on hydrochemical and isotopic analyses of sixty water samples collected from surface water and groundwater of the Quaternary and Miocene aquifers. This includes major cations (Na⁺, K⁺, Ca²⁺ and Mg²⁺), major anions (Cl⁻, SO₄²⁻, HCO₃⁻), minor ions (SiO₃²⁻, PO₄³⁻ and NO₃⁻), trace elements (Fe, Mn, Cu, Pb, Zn, Co, B and Al) and environmental isotopes, (²H, ¹⁸O, ¹³C, ³H, and ¹⁴C).

The groundwater of the Quaternary aquifer is extremely less saline and less mineralogically developed than Miocene groundwater at the east of studied area. The variation in salt contents from one area to another depend on many factors; as the natural (evaporation, leaching, dissolution and cation exchange) and anthropogenic factors. Oxgen-18 and deuterium concentrations were used to identify the sources of recharge and renewability, as factors affecting the mineralization of the water resources in the studied area. The Quaternary aquifer is predominately affected by the continual recharge from present day Nile water while the Miocene aquifer is predominately affected by paleowater of pluvial times meteoric cycle, a zone of mixing occurs at some localities which are delineated in this work.

The results of analyses of trace elements in some of the collected samples show that only Fe and Pb in few samples of the Quaternary and Miocene aquifers are slightly exceed the recommended limits, also Mn in few samples of the Quaternary aquifer. On the other hand, nitrate gets high values in most of the groundwater samples which represents high hazard. The suitability of the investigated groundwater for drinking, domestic, agriculture and industrial purposes was evaluated by comparing the results of analyses with the limits of international standards.

Supervisors: **Prof. Dr. Motaza M. Khater**

Prof. Dr. Wafaa Mohamed Salem Dr. Ahmed Fahmy

Prof. Dr. Rifaat Hassan Hilal

Chairman of Chemistry Department Faculty of Science, Cairo University

Statement

This thesis is submitted in partial fulfillment of the requirements of M.Sc. Degree. In addition to the work carried out in this thesis, the candidate has accomplished with success the post graduate studies during the academic year 2005-2006 in the following topics:

- 1. Techniques of Molecular Structure.
- 2. Advanced Analytical Chemistry.
- 3. Quantum Chemistry.
- 4. Group Theory.
- 5. Surface Chemistry
- 6. Electrokinetic Phenomena.
- 7. Polymer Chemistry.
- 8. ElectroChemistry of Molten Salts and Metallurgy.
- 9. Nuclear Chemistry.
- 10. Chemistry of the Solar Cell.
- 11. Statistical Thermodynamics.
- 12. Advanced Inorganic Chemistry.
- 13. Polarography and Voltammetry.
- 14. Thermal analysis and X-ray.
- 15. Inorganic Reaction Mechanism.
- 16. Modern Electrochemistry.
- 17. Chelatimetry.
- 18. Catalysis.
- 19. Thermodynamics.
- 20. German Language.

Prof. Dr. Rifaat Hassan Hilal

Chairman of Chemistry Department Faculty of Science, Cairo University

ACKNOWLEDGEMENT

Thanks to Allah, the Most Beneficent, the Most Merciful for inspiring me the right path to his content and to enable me to continue the work started in this thesis to the benefits of my country.

I am deeply grateful to **Prof. Dr. Motaza M. Khater**, for her detailed and constructive comments, and for her important support throughout this work.

It is my great pleasure to cordially express my sincere appreciation of all the efforts provided by my supervisor, **Prof. Dr.** *Wafaa Mohamed Salem* and **Prof. Dr.** *Mostafa abd El-Hamid Sadek*. I would like to express my deepest thanks and gratitude for their kind supervision, cooperation, faithful help and continues interest during this research.

Thanks, appreciation and gratitude are due to **Dr**. *Ahmed Fahmy* for his keen enthusiasm, sincere guidance, moral help and support throughout this work.

During this work I have collaborated with many colleagues for whom I have great regard, and I wish to extend my warmest thanks to all those who have helped me with my work in the Central laboratory of Isotope hydrology, especially **Dr. Ahmed El-Khatat.**

I owe my loving thanks to my family and my friends, without their encouragement and understanding it would have been impossible for me to finish this work.

Faten Attia Ali

Chemist

Isotope Hydrology laboratory

National Center for Nuclear Safety

Atomic Energy Authority

CONTENTS

	Subject	Page
AIM OF 7	THE WORK	xix
CHAPT	TER I Introduction and Literature Survey	
I.1.	Introduction	1
I.2.	Background information	1
I.2.1.	Location of the studied area	1
I.2.2.	Climate	3
I.2.3.	Literature survey	3
I.3.	Geological and hydrogeological aspects	6
I.4.	Hydrogeochemical parameters	11
I.4.1.	Total dissolved salts (TDS)	11
I.4.2.	Major cations	12
I.4.3.	Major anions	13
I.4.4.	Minor ions	14
I.4.5.	Trace elements	15
I.5.	Environmental isotope hydrology	17
I.5.1.	Stable environmental isotopes (² H, ¹⁸ O and ¹³ C)	19
I.5.1.1	Oxgen-18 and deuterium (¹⁸ O, ² H)	19
I.5.1.2.	Occurrence of stable carbon isotope ¹³ C	23
I.5. 2.	Radioactive environmental isotopes (³ H and ¹⁴ C)	24
I.5. 2.1.	Tritium	24
I.5. 2.2.	Carbon-14	27
CHAPT	TER II Experimental	
II.1.	Reagents	33
II.2.	Instruments	33
II.2.1.	Field instruments	33
II.2.2.	Laboratory instruments	34
II.3.	Sampling procedures	36
II.4.	Laboratory studies	39
II.5.	Chemical analyses of the collected samples	40
II.5.1.	pH and EC	40

II.5.2.	Total dissolved solid	40
II.5.3.	Major anions	40
II.5.4.	Major cations	40
II.5.5.	Minor ions	41
II.5.6.	Trace elements analysis	42
II.6.	Environmental isotopes	42
II.6.1.	Stable isotopes	42
II.6.1.1.	Oxgen-18 and deuterium	42
II.6.1.2.	Carbon-13	43
II.6.2.	Radioactive isotopes	43
II.6.2.1.	Tritium	43
II.6.2.2.	Carbon-14	
CHAPT	ER III Results and Discussion	
III.1.	Hydrogeochemical aspects	47
III.1.1.	General outline	47
III.1.2.	TDS and major ions distribution	49
III.1.3.	Ionic dominance and water types	56
III.1.3.1.	Ionic dominance and water type of drainage and irrigation canals	56
III.1.3.2.	Ionic dominance and water type of Quaternary aquifer	56
III.1.3.3.	Ionic dominance and water type of Miocene aquifer	58
III.1.4.	Correlation analysis	59
III.1.5.	Hypothetical salt combinations	61
III.1.6.	Geochemical classification of groundwater	62
III.1.6.1.	Trilinear diagram (Piper diagram)	62
III.1.7.	The hydrochemical coefficients	65
III.1.7.1.	Sodium/ Chloride ions ratio	66
III.1.7.2.	Calcium/ Chloride ions ratio	67
III.1.7.3.	Magnesium/ Chloride ions ratio	68
III.1.7.4.	Calcium/ Sulphate ions ratio	70
III.1.8.	Ion exchange reactions	71
III.2.	Water quality	75
III.2.1.	Trace elements, minor anions and degradation aspects	75
III.2.1.1.	Distribution of nitrate	77

III.2.1.2.	Distribution of silica	78
III.2.1.3.	Distribution of phosphate	78
III.2.1.4.	Distribution of iron	78
III.2.1.5.	Distribution of lead	79
III.2.1.6.	Distribution of manganese	79
III.2.1.7.	Distribution of copper and zinc	79
III.2.2.	Suitability of surface water and groundwater for different purposes	79
III.2.2.1.	Suitability of the studied water sources for drinking	80
III.2.2.2.	Suitability of the studied water sources for domestic uses	81
III.2.2.3.	Evaluation of the studied water for livestock and poultry	85
III.2.2.4.	Suitability of the studied water sources for irrigation	86
III.2.2.5.	Water quality for industrial purposes	94
III.3.	Environmental isotopes investigation	95
III.3.1.	Stable environmental isotope	95
III.3.1.1.	Oxgen-18 and deuterium	95
III.3.1.2	Carbon-13	104
III.3.2.	Radioactive isotopes	104
III.3.2.1.	Tritium	104
III.3.2.2.	Carbon-14	106
	Summary	108
	References	115
	Arabic summary	121

List of Tables

No.	Title	Page
1	Metrological data of the studied area.	3
2	Stable isotopes of hydrogen, oxygen and carbon in the hydrological	
	cycle.	19
3	Chemicals used in this work.	33
4	Position of the studied wells [map (15)].	36
5	Position of the studied surface water [map (15)].	38
6	Operation conditions of the Ion Chromatograph.	41
7	Results of hydrochemical analyses of the studied surface and	
	groundwater samples (2006).	48
8	The TDS values of the water samples in the studied area.	50
9	Classification of the studied water samples based on their TDS values.	50
10	Ranges of major ions of the water samples in the studied area.	52
11	Matrix of correlation coefficients between TDS and major ions (in	
	mg/l) in the Quaternary aquifer of the studied area.	60
12	Matrix of correlation coefficients between TDS and major ions (in	
	mg/l) in the Miocene aquifer of the studied area.	60
13	Salt assemblages for water samples in the studied area.	61
14	Results of analysis of minor ions for some water samples.	75
15	Results of analyses of trace elements (in mg/l) for some water	
	samples.	77
16	Standards and specification of drinking water recommended by	
	Egyptian High Committee of Water.	81
17	Water quality standard for domestic uses.	82
18	Classification of the studied water samples based on hardness for	
	domestic uses.	83
19	Classification of saline water for livestock and poultry according to the	85
	National Academy of Science.	
20	Classification of the studied water samples for livestock and poultry.	86
21	Classification of irrigation water according to the TDS values.	87

22	Significance and interpretation of water quality classes based on the	
	SAR values.	91
23	Significance and interpretation of water quality classes based on the	
	EC values.	91
24	Classification of waters for their suitability in irrigation process	
	according to the RSC values.	93
25	Classification of water samples in the studied area according to Eaton	
	classification.	93
26	Limits of the National Academy of Science for industrial water.	94
27	Results of stable isotope analysis of the groundwater samples in the	95
	studied area, (2006).	
28	Results of stable isotope analysis of the surface water samples in the	
	studied area, (2006).	97
29	Tritium and carbon -14 results for the groundwater samples, (2006).	105

List of Figures

No.	Title	Page
1	Location map of the studied area.	2
2	The geomorphology of the area under investigation.	7
3	Surface geology of the studied area.	9
4	Hydrogen and oxygen content of ocean water and precipitation.	21
5	Deviations in isotopic compositions away from the meteoric water line	
	as a consequence of various processes.	22
6	General view of ¹³ C/ ¹² C variations in natural compounds.	24
7	Origin and distribution of ³ H in nature.	26
8	Smoothed curve representing the average ³ H content of precipitation	
	over the continental surface of the northern hemisphere.	27
9	Average ¹⁴ C content in northern hemisphere.	28
10	Hydrological cycle of ¹⁴ C.	29
11	Ion Chromatograph (Dionex, model: DX-600).	34
12	Isotope Ratio Mass spectrometer (ThermoFinnigan - Delta ^{plus} XL).	35
13	Benzene synthesizer apparatus.	35
14	Liquid Scintillation Counter (LSC) device.	35
15	Location map of the ground and surface water samples.	39
16	Iso – TDS contour map of the Quaternary and Miocene aquifers in the	
	studied area.	51
17	Iso – (Na ⁺ +K ⁺) contour map of the Quaternary and Miocene aquifers	
	in the studied area.	53
18	Iso – Ca ²⁺ contour map of the Quaternary and Miocene aquifers in the	
	studied area.	53
19	Iso – Mg ²⁺ contour map of the Quaternary and Miocene aquifers in the	
	studied area.	54
20	Iso –SO ₄ ² -contour map of the Quaternary and Miocene aquifers in the	
	studied area.	54
21	Iso- Cl ⁻ contour map of the Quaternary and Miocene aquifers in the	
	studied area.	55