

Ain Shams University
Faculty of Education
Department of mathematics

Pulsatile motion of non-Newtonian fluid with heat and mass transfer through different geometric shapes and its applications

A Thesis

Submitted as a Partial Fulfillment for the Requirement of the Master Degree in Teacher Preparation in Science

(Applied Mathematics)

To

Department of mathematics Faculty of Education, Ain Shams University

Bv

Ehab SaidAshour Mohammed

Under the Supervision of

Prof. Dr. Nabil.T.M.El-dabe Prof. Dr. Galal.M.Moatmed

Department of mathematics Department of mathematics

Faculty of Education Faculty of Education

Ain Shams University Ain Shams University

Dr. Mohamed. A. Gaber.

Department of mathematics

Faculty of Education

Ain Shams University

Approval

Ain Shams University
Faculty of Education
Department of mathematics

Approval

Degree:-Master Degree in Teacher Preparation in Science(Applied Mathematics)

Title:-Pulsatile motion of non-Newtonian fluid with heat and mass transfer through different geometric shapes and its applications

Candidate:-Ehab Said Ashour Mohammed

Approved by Advisors

Prof. Dr. Nabil.T.M.El-dabe Prof. Dr. Galal.M.Moatmed

Department of mathematics Department of mathematics

Faculty of Education Faculty of Education

Ain Shams University Ain Shams University

Dr. Mohamed. A. Gaber,

Department of mathematics
Faculty of Education
Ain Shams University

Acknowledgments

Acknowledgments

First, thanks are all to the God for blessing this work until it has reached its end and little part of this generous helping throughout our life. Whatever I said, I will still be unable to show how much I am appreciative and grateful to Prof. Dr. Nabil.T.M.El-dabe, Department of mathematics, Faculty of Education, Ain Shams University, for his fabulous support and supervision, as without his patience and his persistent encouragement this work would be never done in such way

My special thanks go to Prof. Dr. Galal.M.Moatmed, mathematics Department, Faculty of Education, Ain Shams University, his fabulous support and supervision, forkind supervision and for her valuable guidance through the preparation of this thesis.

I would also like to acknowledge my deepest gratitude to Dr. Mohamed.A .Gaber, , Department of mathematics Faculty of Education, Ain ShamsUniversity, for suggesting the problems in this thesis, and For her valuable comment, critical reading, and illuminating points which were of greatest helpto me while preparing the thesis

Many thanks to the staff of the Department of mathematics, Faculty of Education, Ain Shams. For their kind help and for the facilities which they offered to me through this work.

Summary

Summary

Applied mathematics to biological systems gives the ability to construct mathematical models. Such models are mathematical systems that attempt to represent the complex interactions of biological systems in a way simple enough for their consequences to be understood and explored. Traditionally models that allowed biologists to see a problem in a simplified way have been complicated structure, while mathematical models that constructed to exhibit simple biological properties that could be analyzed. This kind of model, however, is restricted by technology as well as technological ingenuity. Mathematical models have no such restriction and can be used to construct any sort of biological system; respiratory flows, pulsating blood flow, micro-and macro-circulation systems bio heat and mass transfer models are some examples of these mathematical models these flows may be studied under a well-known branch of science it is named by bio fluid mechanics. By bio fluid mechanics we can understand the physiological processes that occur in the human circulation and analyze the physical mechanisms that under line them. Understanding the basic processes occurring in the human body will facilitate the engineering design and construction of new medical devices and machinery. Our thesis concerns with A computational Study of the external forces effects on the motion of fluids through biological tissues such as blood flow through tissues.

The present thesis consists of four chapters with two summaries one of them with Arabic language and the other with English language and list of references for books and papers related to the subjects of the thesis.

Chapter 1

This chapter includes the introduction which is closely related to the subjected of the thesis.

Such as Mechanics, Newtonian fluid and Non-Newtonian fluid, magneto-hydrodynamics, and basic equations, porous medium, porosity, Darcy law and non-Darcian equations.

We summarized the basic equations of Newtonian and non- Newtonian fluids(continuity equation, momentum equation, Energy equation, and Concentration equation), models of heat transfer (radiation, convection, conduction, evaporation), bio heat and mass transfer.

Chapter 2

The second chapter investigates the influence of the electric field with heat and mass transfer on the pulsatile flow of viscoelastic fluid in a channel bounded by a porous layer of smart material. The problem is modulated mathematically by a set of partial differential equations, which represent the continuity, momentum, energy and concentration equations, besides the Maxwell equations with appropriate boundary conditions. The system of equations which describes the motion of fluid phase and layer porous phase are solved analytically by using perturbation technique for steady and unsteady cases. The effects of various emerging parameters on the flow characteristics, heat and mass processes are shown and discussed with the help of graphs.

Chapter 3

In this chapter, The flow due to the pulsatile pressure gradient of non-Newtonian fluid with heat and mass transfer along a porous oscillating channel is considered. The system is stressed by transvers magnetic field. The non-Newtonian fluid under consideration is obeying the viscoelastic model. The governed system of partial differential equations which describe the motion of this fluid is written, in non-dimensional form. This system of equations with an appropriate boundary conditions is solved analytically by using perturbation technique for small

material parameter α_2 . The velocity, temperature and concentration distributions of the fluid are obtained as functions of the physical parameters of the problem. The effects of these physical parameters of the problem on these solutions are discussed and illustrated graphically through a set of figures.

Chapter 4

In this chapter, We have analyzed the MHD flow of a conducting couple stress fluid in oscillating channel with heat and mass transfer. The non-Newtonian fluid under consideration is obeying the Bi-viscosity model. In this analysis we are taking into account the induced magnetic fieldand porous medium. The analytic solution for the problem has been obtained by using homotopy perturbation method for steady and unsteady cases. The distributions of the velocity, temperature and concentration functions are discussed and illustrated graphically for different values of the physical parameters of the problem for various parameters such assuch as the couple stress parameter, the Hartmann number M^2 , the Reynolds number R_e and thermal

contents

Acknowledgments	غير معرّفة	المرجعية	! الإشارة
Summary	غير معرّفة	ة المرجعية	! الإشارة
contents	غير معرّفة	ة المرجعية	! الإشارة
Introduction	غير معرّفة	ة المرجعية	! الإشارة
1.1 Fluid Mechanics	غير معرّفة	المرجعية	! الإشارة
1.2 Newtonian fluids	غير معرّفة	المرجعية	! الإشارة
1.3 Non-Newtonian fluids	غير معرّفة	ة المرجعية	! الإشارة
1.4 Classification of Non-Newtonian fluid:	غير معرّفة	المرجعية	! الإشارة
1.4.1 Time-independent non-Newtonian fluids:	غير معرّفة	المرجعية	! الإشارة
1.4.1.1 Pseudoplastic fluids (shear thinning fluids):	غير معرّفة	المرجعية	! الإشارة
1.4.1.2 Dilatant fluids (shear thickening fluids)	غير معرّفة	ة المرجعية	! الإشارة
1.4.1.3 Viscoplastic fluids	غير	ة المرجعية	! الإشبارة
1.4.2 Time-dependent non-Newtonian fluids	غير معرّفة	المرجعية	! الإشارة
1.4.2.1 Thixotropic	غير معرّفة	المرجعية	! الإشارة
1.4.2.2 Rheopectic	غير معرّفة	المرجعية	! الإشارة
1.4.3 Viscoelastic fluids	غير معرّفة	المرجعية	! الإشارة
1.4.3.1 Viscosity	غير معرّفة	المرجعية	! الإشارة
1.4.3.2 elasticity	غير معرّفة	ة المرجعية	! الإشارة
1.4.3.3 Elastico-viscous fluids	غير معرّفة	ة المرجعية	! الإشارة
1.4.3.4 Maxwell fluids	غير معرّفة	جعية	!
1.5 Constitutive equations	غير معرّفة	ة المرجعية	! الإشارة
11 Bi-viscosity model	غير معرّفة	ة المرجعية	! الإشارة
12 viscoelastic model	غير معرّفة	ة المرجعية	! الإشارة
13 Jeffery fluid model	غير معرّفة	ة المرجعية	! الإشارة
14 viscoplastic fluids	غير معرّفة	ة المرجعية	! الإشارة
15 Reiner-Rivillin fluids	غير معرّفة	ة المرجعية	! الإشارة
16 The Bingham plastic	غير معرّفة	ة المرجعية	! الإشارة

17 Power-law model	! ارة المرجعية غير معرّفة
18 Herschel-Bulkley	! الإشارة المرجعية غير معرّفة
19 The Ellis model	! الإشارة المرجعية غير معرّفة
110 Carreau-Yasuda	! الإشارة المرجعية غير معرّفة
1.6 heat transfer	! الإشارة المرجعية غير معرّفة
1.6.1 models of heat transfer	! الإشارة المرجعية غير معرّفة
1.6.1.1 radiation	! الإشارة المرجعية غير معرّفة
1.6.1.2 convection	! الإشارة المرجعية غير معرّفة
1.6.1.3 conduction	! الإشارة المرجعية غير معرّفة
1.6.1.4 evaporation	! الإشارة المرجعية غير معرّفة
1.6.2 Bio-heat transfer	! الإشارة المرجعية غير معرّفة
1.7 Mass transfer	! الإشارة المرجعية غير معرّفة
1.7.1 Mass transfer by convection	! الإشارة المرجعية غير معرّفة
1.7.2 Fick's law of diffusion	! الإشارة المرجعية غير معرّفة
1.7.3 The mass transfer coefficient	! الإشارة المرجعية غير معرّفة
1.7.4 The Physical mechanism of diffusion:	! الإشارة المرجعية غير
1.7.5 Diffusion in liquids and solids:	! الإشارة المرجعية غير معرّفة
1.7.6 Mass transfer with chemical reaction	! الإشارة المرجعية غير معرّفة
1.7.7 A diffusion controlled reactions:	! الإشارة المرجعية غير معرّفة
1.8 Magneto-hydrodynamics (MHD)	! الإشارة المرجعية غير معرّفة
1.8.1 Basic equations of MHD	! الإشارة المرجعية غير معرّفة
Ohm's law	! الإشارة المرجعية غير معرّفة
1.9 porous medium	! الإشارة المرجعية غير معرّفة
1.9.1 Porosity	! عية غير معرّفة
1.9.2 permeability	! الإشارة المرجعية غير معرّفة
1.9.3 Darcy's Law: Permeability	! الإشارة المرجعية غير معرّفة
1.9.4 Non-Darcy models	! الإشارة المرجعية غير معرّفة
1.10 Basic equation of a Newtonian or (non- Newtonian) fl	فطأ! الإشارة المرجعية غير .luids
1.10.1 continuity equation	ا الاشارة المرجعية غير معرفة

	1.10.2	momentum equation	معرّفة	إشارة المرجعية غير	7) !
	1.10.3	Energy equation	معرّفة	إشارة المرجعية غير	71 !
	1.10.4	Concentration equation	معرّفة	رة المرجعية غير	!
	1.11 Hom	otopy perturbation method	معرّفة	إشارة المرجعية غير	71 !
mass tr ر معرّفة.	ransfer thro	rodynamic pulsatile flow of Non-Newtonian visc ugh a channel bounded by a porous layer of smart i			
	2.1 Introd	uction	معرّفة	إشارة المرجعية غير	71 !
	2.2 Formul	lation of the problem	معرّفة	إشارة المرجعية غير	11 !
	2.3 For the	motion of the viscoelastic fluid through phase (1):	معرّفة.	إشارة المرجعية غير	71 !
	2.4 For the	e motion of the porous layers in phase (2)	معرّفة.	إشارة المرجعية غير	71 !
	2.6 EHD 0	dispersion relation in the case of unsteady flow	معرّفة	إشارة المرجعية غير	71 !
	2.7 Result	s and Discussions:	معرّفة	إشارة المرجعية غير	71 !
	2.7.1 S	teady state :	معرّفة	إشارة المرجعية غير	71 !
	2.7.2 U	nsteady state:	معرّفة.	إشارة المرجعية غير	71 !
	2.8 Conclu	sion.	معرّفة.	إشارة المرجعية غير	71 !
fluid w		chemical reaction on magnetohydrodynamic pulsus transfer through a porous medium			
	3.1 Introdu	ection	معرّفة	إشارة المرجعية غير	71 !
	3.2 Formul	lation of the problem	معرّفة	إشارة المرجعية غير	71 !
	3.3 Basic	equations	ه	إشارة المرجعية غير	71 !
	3.4.1 St	teady case:	معرّفة.	إشارة المرجعية غير	71 !
	3.4.2 U	nsteady case:	معرّفة	إشارة المرجعية غير	71 !
	3.4.3 S	olution of steady case:	معرّفة.	إشارة المرجعية غير	71 !
	3.4.3 S	olution of unsteady case:	معرّفة	إشارة المرجعية غير	71 !
	3.5 Results	and discussion	معرّفة	إشارة المرجعية غير	71 !
	3.6 Conclu	sion	معرّفة	إشارة المرجعية غير	71 !
couple		Mass transfer of magnetohydrodynamic pulsatile igh Porous medium			
	4.1 Introd	uction	معرّفة	ية غير	!

4.2 Formulation and solution	! الإشارة المرجعية غير معرّفة.
4.3 Basic equations	! الإشارة المرجعية غير معرّفة
4.4 Solution of the problem	! الإشارة المرجعية غير معرّفة
4.4.1 Steady case:	! الإشارة المرجعية غير معرّفة
4.4.2 Unsteady case:	! الإشارة المرجعية غير معرّفة
4.4.3 Solution of steady case:	! الإشارة المرجعية غير معرّفة
4.4.2 Solution of unsteady case:	! الإشارة المرجعية غير معرّفة
4.5 Results and discussion	! ة المرجعية غير معرفة
4.6 conclusion	! الإشارة المرجعية غير معرّفة
Appendex (A)	! الإشارة المرجعية غير معرّفة
Appendex (B)	! الإشارة المرجعية غير معرّفة
Appendex (C)	! الإشارة المرجعية غير معرّفة
Referance	