بسم الله الرحمن الرحيم

" قالوا سبحانك لا علم لنا إلا ما علمتنا إنك أنت العليم الحكيم" صدق الله العظيم

"الآية ٣٢ من سورة البقرة"

Effect of Atmospheric Pressure Changes on Bond Strength and Microleakage of Different Aesthetic Restorative Materials

Thesis
Submitted to the Faculty of Oral and Dental Medicine,
Cairo University,
In Partial Fulfillment of the requirements of the Master Degree in
Dental Materials

By

Hatem Mohamed Mohamed Ibrahim

B. D. S. Miser University for Science and Technology (M.U.S.T)
2002

Supervisors

Dr. Nadia Amin Badr

Professor of Dental Materials
Biomaterials Department
Faculty of Oral and Dental Medicine
Cairo University

Dr. Randa Nabil Elsalawy

Associate professor of Dental Materials
Biomaterials Department
Faculty of Oral and Dental Medicine
Cairo University

Acknowledgment

First of all, I want to thank **God** for giving me the strength, the effort and everything that helped me in accomplishing this thesis.

I am greatly honored to express my gratitude to **Professor Dr. Nadia Amin Badr,** Professor of Dental Materials, Biomaterials Department,

Faculty of Oral and Dental Medicine, Cairo University for her unlimited guidance, valuable advises and continuous encouragement.

I would like to express my deep thanks to **Dr. Randa Nabil Elsalawy**Associate professor of Dental Materials, Biomaterials Department,
Faculty of Oral and Dental Medicine, Cairo University for her help and encouragement.

I would like to express my deepest gratitude to **Professor Dr. Sayed Hussein Saniour**, Head of Biomaterials Department, Faculty of Oral and

Dental Medicine, Cairo University for unlimited kindness and stimulating

guidance since the under graduate part of my life.

Many thanks are due to **Dr. Hassan Mohamed Elshamy**, Lecturer of Operative Dentistry, Nahda University for his help and support.

All, my Professors and colleagues at Misr University for Science and Technology, thank you for your endless support.

Dedication

This work is dedicated to....

Soul of my father,

My mother for her endless love and support,

My wife for her encouragement and understanding,

And last but not least my beloved daughter Karma

Contents

	Page
List of tables	i
List of figures	ii
Abstract	iii
Introduction	1
Review of literature	2
I- Development and advancement of direct aesthetic restorative	
Materials	2
I.1- Resin composites	2
I.2- Glass ionomer cements	5
II- Bond strength measurement	7
III- Microleakage assessment	· 18
IV- Environmental pressure	-23
Aim of the study	. 27
Materials and methods	28
I- Materials	.28
II-Methods	.30
II.1- Teeth selection	32
II.2- Testing of shear bond strength	.32
II.2.i- Teeth mounting	.32
II.2.ii- Grouping of teeth	.35
II.2.iii- Samples preparation	.35
II.2.iv- Materials' application	.36
II.2.v- Application of pressure	.42
II.2.vi-Bond strength testing	.44
II 2 vii. Modo of failuro	11

II.2.viii- Statistical analysis	46
II.3- Microleakage assessment	47
II.3.i- Grouping of teeth	47
II.3.ii- Samples preparation	47
II.3.iii-Applicationof pressure	48
II.3.iv- Microleakage Assessment:	48
II.3.v-Statistical analysis	49
Results	50
I- Shear bond strengths	50
I.1- Effect of the tested applied pressure	50
I.2- Effect of tooth substrates on the bond strength	54
I.3- Effect of the investigated restorative materials on bond	
strength to enamel and dentin under the tested pressures	57
I.4- Mode of failure	57
II- Microleakage	59
II.1-Effect of the tested applied pressure on the microleakage	
of the investigated materials	59
II.2- Effect of the investigated restorative materials on the	
microleakage under the tested pressures	63
Discussion	69
I- Shear Bond Strength	71
I.1- Effect of the tested applied pressure	71
I.2- Effect of tooth substrates	71
I.3- Effect of the investigated restorative materials	74
II- Microleakage assessment	77
II.1- Effect of the tested applied pressure	77
II.2- Effect of the investigated restorative materials	78
Summary and conclusions	80
References	84
Arabic summary	93

List of Tables

Pag	ze
Table (1): The materials, the trade name and compositions of the	
materials used in this study28	
Table (2): The variables and interactions used in this study31	
Table (3): Descriptive statistics and test of significance for the effect of	
the tested atmospheric pressures on shear bond strength of	
the investigated restorative materials bonded to enamel51	
Table (4): Descriptive statistics and test of significance for the effect of	
the tested atmospheric pressures on shear bond strength of	
the investigated restorative materials bonded to dentin53	3
Table (5): Descriptive statistics and test of significance for the effect	
tooth substrates on shear bond strength of the investigated	
restorative materials at the tested atmospheric pressures56)
Table (6): Descriptive statistics and test of significance for the effect of	
the restorative material on shear bond strength of the	
investigated restorative materials bonded to enamel and	
dentin under the tested pressures	}
Table (7): Prevalence of microleakage score under the tested pressures	
of the investigated restorative materials61	
Table (8): Prevalence of microleakage score of the investigated	
materials under the tested applied pressures	5

List of Figures

Page	e
Figure (1-A): Circular Teflon plate, split aluminum mounting rings	
and external copper ring34	
Figure (1-B): The double adhesive tape fitted in square hole of	
the assembled ring34	
Figure (1-C): The maximum convexity of buccal surface of the	
tooth centralized on the double adhesive tape34	
Figure (1-D): Tooth embedded horizontally in the acrylic resin	
mold34	
Figure (2): The split Teflon mold and copper ring used in the	
preparation of the restorative materials samples	
bonded to tooth structure37	
Figure (3): Checking of the diameter of the restorative material	
cylinder using a digital caliper41	
Figure (4): A representative sample for the tooth with the bonded	
restorative material cylinders41	
Figure (5): A specially constructed steel flask and sample	
immersed inside the flask43	
Figure (6): Nitrogen tank connected to the flask and two pressure	
gauges used to adjust the pressure delivered and	
pressure applied to the tested samples43	
Figure (7): A specially machined steel attachments45	

Page
Figure (8): The assembly with the bonded restorative material
cylinders attached to the lower jig .Upper right figure
shows the load application45
Figure (9): Mean shear bond strength of the investigated restorative
materials bonded to enamel under the tested applied
pressure51
Figure (10): Mean shear bond strength of the investigated restorative
materials bonded to dentin under the tested applied
pressure53
Figure (11): Prevalence of microleakage score in the investigated
restorative materials under P1 pressure62
Figure (12): Prevalence of microleakage score in the investigated
restorative materials under P2 pressure62
Figure (13): Prevalence of microleakage score in the investigated
restorative materials under P3 pressure62
Figure (14): Prevalence of microleakage score of the investigated
materials under the tested applied pressure66
Figure (15): A representative sample for Score 0 microleakage67
Figure (16): A representative sample for Score 1 microleakage67
Figure (17): A representative sample for Score 2 microleakage68
Figure (18): A representative sample for Score 3 microleakage68

Effect of Atmospheric Pressure Changes on Bond Strength and Microleakage of Different Aesthetic Restorative Materials

Abstract:

The aim of this study was to determine the effect of different atmospheric pressure values on the shear bond strength and microleakage of low-shrinkage composite, nano-composite, conventional glass ionomer cement and nano resin-modified glass-ionomer cement. 120 intact human molar teeth were used for shear bond strength testing using universal testing machine, while 60 teeth were used for microleakage assessment using stereomicroscope to identify the scoring levels of dye penetration. Both parameters were tested for enamel and dentin substrates. The results revealed that increasing the atmospheric pressures reduced the shear bond strength while increased the microleakage for all investigated materials.

Keywords: low-shrinkage composite, nano-filled composite, conventional glass ionomer cement and nano resin-modified glass-ionomer cement, shear bond strength, microleakage, atmospheric pressure.

Introduction

Increased people's desire in invading the underwater world creates a new era of medical specialty due to physiological and pathological conditions caused by the great variant between the sea level and underwater level during diving.

Clinically, environmental pressure cycling has been found to be associated with barotraumas and barodontalgia. Barotrauma is the mechanical damage occurs due to disruption of gas filled spaces. Meanwhile, barodontalgia is the pain experienced in the teeth initiated by changes in barometric pressure. This symptom was originally used to describe the dental pain developed by pilots in unpressurized cockpits during the early 1940 (30).

This form of dental pain is generally marked by a predisposing dental pathology such as acute or chronic periapical infection, caries, deep or failing restorations, residual dental cysts, sinusitis or a history of recent dental surgery. Meticulous oral health is advised for divers to avoid barodontalgia. All carious lesions should be restored, ill-fitting crowns replaced, active periodontal lesions treated and all endodontic therapy completed ⁽⁶⁰⁾.

There was little available literature focusing on the effect of pressure variations on the properties of the restorative materials and their marginal integrity, as well. Therefore, it is a concern that needs to be addressed to overcome all dental problems related to divers exposed to pressure changes.

Review of literature

I- Development and advancement of direct aesthetic restorative materials

I.1- Resin composites

Generally, composites consist of fillers embedded in a chemically-reactive organic resin matrix. Fillers are typically inorganic materials like glass or quartz which are functionalized by surface treatment (silanization), enabling chemical linkage to the resin matrix.

The composite resins were firstly introduced in the 1960s, they were chemically cured and their use was limited for class III, IV and V cavity preparations. The filler particles were large (mean diameter 0.8 to 100 micrometers [µm]). High wear rates and marginal leakage made such composites unacceptable for long-term restorations. In the 1970s, a major step in composite technology occurred with the introduction of light-cured composite resins. Studies have demonstrated that light-cured composite resins are more wear-resistant and more color-stable than the self-cured composite resins. The improved wear resistance was the result of using smaller filler particles (mean diameter 0.5 to 8 micrometers [µm]) and less air incorporation during placement of the restoration. Increased air causes inhibition of the polymerization process and creates voids that accelerate wear (*Leinfelder*, *1997*) ⁽³⁶⁾.

In the early 1980s, resins specifically for posterior use appeared in the market. They were relatively high wear resistant because of reduced particle size and increased filler loading. In the mid-1980s, significant