USING STABLE ISOTOPES AND OTHER TECHNIQUES AS TRACERS FOR POLLUTION TRANSPORT IN SOIL AND PLANTS

BY AHMED ABD EL SALAM ALI EASA

B.Sc. Agric. Sc. (Agricultural Biochemistry), Ain Shams University, 1999

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE In

Agricultural Science (Agricultural Biochemistry)

Department of Agricultural Biochemistry Faculty of Agriculture Ain Shams University

Approval sheet

USING STABLE ISOTOPES AND OTHER TECHNIQUES AS TRACERS FOR POLLUTION TRANSPORT IN SOIL AND PLANTS

AHMED ABD EL SALAM ALI EASA

B.Sc. Agric. Sc. (Agricultural Biochemistry), Ain Shams University, 1999

This thesis for M.Sc. degree has been approved by:	
•••••	
Zagazeeg University.	
•••••	
culture, Ain Shams	
•••••	
Ain Shams University	
•••••	
riculture, Ain Shams	

USING STABLE ISOTOPES AND OTHER TECHNIQUES AS TRACERS FOR POLLUTION TRANSPORT IN SOIL AND PLANTS

BY AHMED ABD EL SALAM ALI EASA

B.Sc. Agric. Sc. (Agricultural Biochemistry), Ain Shams University, 1999

Under the supervision of:

Prof. Dr. Farouk Guindi Moawad

Professor Emeritus of Agricultural Biochemistry, Faculty of Agriculture, Ain Shams University

Prof. Dr. Nagah El Shahat Ali

Professor of Agricultural Biochemistry, Faculty of Agriculture, Ain Shams University

Prof. Dr. Aly Islam M. Aly

Prof. of Chemical Engineering, Atomic Energy Authority

ABSTRACT

Ahmed Abd Elsalam Ali Easa. "USING STABLE ISOTOPES AND **OTHER TECHNIQUES** AS TRACER **POLLUTION TRANSPORT** IN **SOIL AND** PLANTS". M.Sc. thesis **Department** of **Agricultural Unpublished** Biochemistry, Faculty of Agriculture, Ain Shams University,

Abu Rawash area is one of the Egyptian areas that subjected to some environmental contaminant due to the prolonged time of wastewater disposal during irrigation that practices environmental contamination in soil and groundwater. The present work aims mainly at the use of different techniques to trace the pollutants coming from sewage water and their movement in agriculture soil. These techniques can be used to give us a complete picture about the nature of these contaminants and its behavior in soil layers.

Two core of sandy soils ('...cm depth), two core of clay soils ('...cm depth), and two types of plants were collected from the studied area during the term of this study.

The optioned results of the physical analysis of soil cores indicated that sewage irrigation practices led to increase the percentage of fine particulars in the treated cores with sewage sludge in comparison with the untreated cores. The data also showed that sandy soils have higher bulk density and lower moisture and porosity in comparison with clay soils. The data indicated that sewage irrigation led to increase soil acidity due to the increase of the fermentation rate of soil organic matter through the depth profiles.

The data obtained from heavy metals analysis of soil cores showed that sewage application led to increase the concentration of available heavy metals of the sewage irrigated cores (cores ' and ') in comparison with the untreated cores (cores ' and '). Total heavy metals determination of plant samples indicated that sewage effluent irrigation

led to increase heavy metals concentration (Cd, Co, Cu, Fe, Mn, Ni, Pb, and Zn) in the sewage irrigated plant parts in comparison with the untreated plants.

Isotopic enrichment trends were observed along the soil depth profiles with different amplitudes. The δ^{17} C in cores one and four (sewage irrigated cores) ranged from $-^{7\circ,97}$ to $-^{9}$ % and $-^{77,67}$ to $-^{71,17}$ % respectively, while in cores two and three (unpolluted cores) ranged from $-^{7\circ,77}$ to $-^{71,17}$ % and $-^{77,6\circ}$ to $-^{19,17}$ % respectively, indicating that sewage irrigation caused δ^{17} C to be more depleted in the sewage irrigated cores in comparison with the unpolluted cores. This could illustrate the distribution of carbon isotope of SOM along depth intervals along depth intervals of core samples and reflect the type of organic matter and the decomposition rate in soil profiles.

application also led to increase the NO^r-N concentrations. Concentration of NO^r were generally greatest in th root zone (-- to cm), which presumably reflect a short-term gain due to mineralization of the soil organic matter and fertilizer or manure inputs. Below the root zone, concentrations of NO₇ tended to decrease primarily reflecting short-term losses due to plant uptake and leaching. Values of δ'N in the soil samples ranged from +٤,٠٨% to +٦,٢٧% in core \, from o,97% to 7,51% in core 7, from -7,09% to +7,5% in core 7, and from 1,17% to +7,9,9% in core 4. These data indicated that the source of nitrate pollution in cores one and four were mixing between sewage water and chemical fertilizer, while in cores two and three the source of of nitrate pollution was only from chemical fertilizer.

Key words: Abu Rawash, Pollution, Heavy Metal, Soil Core, Plant, Technique, Stable Isotope, 'C, 'N, Soil Organic Matter.

ACKNOWLEDGMENT

I would like to express my deep gratitude to **Prof. Dr. Farouk Guindi Mouwad** and **Prof. Dr. Nagah El-Shahat Ali** Biochemistry

Department Faculty of Agriculture Ain Shams University for supervising this thesis and their continuous interest.

I would like to express my greatest appreciation and deepest gratitude for **Prof. Dr. Aly Islam M. Aly** Prof. of Chemical Engineering, President of Atomic Energy Authority for planning and supervising this thesis, effective guidance and valuable discussion.

I would like to express my deepest gratitude and indebtedness to Asses. Prof. Dr. Sawsan Gamal Abd Elsamie and Dr. Mona Abbas Ahmed, central lab of stable isotope hydrology for their continuous encouragement, careful follow-up and unfailing offered during the course of the experiments and throughout the preparation and revision of the manuscript.

I would like also to express my deep thanks for all the staff members of **The Central Lab of Stable Isotope Hydrology**, National Centre for Nuclear Safety and Radiation Control, Atomic Energy Authority.

Finally, I would like to express my deepest thanks for My Mother and Family and special thanks to my Wife and my Daughters (Sara and Sama) for care, support and encouragement.

CONTENTS

	Page
LIST OF TABLES	iii
LIST OF FIGURES	v
\. INTRODUCTION	١
7. REVIEW OF LITERATURE.	۲
7.1 Carbon isotope in soil	۲
7.1.1 Carbon isotopes background information	۲
7.1.7 Carbon isotope fractionation in plant	٣
Y.Y.Y C ^{rr} plants	٣
Y.1.Y.Y C [£] plants	٤
Y.Y.Y CAM plants	٤
7.1. Carbon isotope trends in soil profiles	٧
۲.۲ Nitrogen isotope in soil	٩
7.7.1 δ N values of nitrogen sources and reservoirs	١.
Y.Y.Y. Atmospheric sources	11
Y.Y.Y.Y Fertilizers	١٤
Y.Y.Y. Mnimal waste	١٤
Y.Y.Y.£ Plants	10
Y.Y.Y. O Soils	10
۲. Heavy metals in water	١٦
7.5 Effect of sewage irrigation on soil	١٨
7.º Effect of sewage irrigation on plant	77
7.7 Stable isotopes literatures	70
T. MATERIAL AND METHODS	٣.
۳.۱ Sampling techniques	٣.
7.7 Location of the study area	٣١
"." Soil physical properties	47

	Page
۳.۳.۱ Soil texture measurement	٣٢
۳. ۳. Y Soil moisture content	٣٣
۳. ۳. F Bulk density and total porosity	٣٣
۲.٤ Soil pH	٣٤
۳.۰ Heavy metals analysis	٣٤
۳.0,1 Heavy metals in soil	٣٤
۳,0, Heavy metals in plant	70
7.7 Organic matter measurement	٣٧
Y.Y Stable isotope measurement	٣٧
".V.\ Carbon isotope in soil	٣٧
T.Y.Y Nitrogen isotope in soil	٤٠
4. RESULTS AND DISCUSSION	٤٧
٤.١ Soil physical properties	٤٧
٤.٢ Soil pH	٤٩
۲.۳ Trace elements in soil	٥١
٤.٣،١ Sandy soil	٥١
٤٣,٢ Clay soil	٥٧
۶٫۳٫۳ Plant samples analysis	٦٥
٤,٣,٣,١ In potato roots	٦٥
٤,٣,٣,٢ In lettuce leaves	٦٦
٤.٤ Organic matter in soil.	٨٦
٤.٥ Stable isotope in soil	٧٣
٤.٥,١ Carbon isotope	٧٣
٤.٥,٢ Nitrogen isotope	۸.
•. SUMMARY AND RECOMMENDATIONS	٨٦
7. REFERENCES	91

LIST OF TABLES

	Page
٤,١ Mean values of physical properties of soil profiles	٤٧
٤,٢ Soil moisture content in soil samples	٤٨
۴,۳ The pH values in sandy soils	٤٩
٤,٤ The pH values in clay soil	٥١
E, Concentration of available Cd, Co, Cu, Fe, Mg, Ni, Pi Zn in sandy cores in mg/kg soil	b, and or
Fig. 7 The amounts of heavy metals (mg/kg) in the root zone of one in comparison with core two	of core or
E, V Accumulation percentage of available heavy metals is zone of core one	n root ol
غ,۸ Accumulation percentage of available heavy metals i zone of core two	n root ov
E, Concentration of available Cd, Co, Cu, Fe, Mg, Ni, Pi Zn in sandy cores in mg/kg soil	b, and oA
٤,١٠ Accumulation percentage of available heavy metals i zone in core three	n root 71
E, N Accumulation percentage of available heavy metals i zone in core four	n root 74
E, IT Correlation coefficient between heavy metals in core of	ne 77
٤,١٣ Correlation coefficient between heavy metals in core tv	wo 1r
٤,١٤ Correlation coefficient between heavy metals in core th	nree 7 m
٤,١٥ Correlation coefficient between heavy metals in core fo	our 7 {
٤,١٦ Heavy metals concentration in potato roots in µg/g	٦٥
٤,١٧ Heavy metals concentration in lettuce leaves µg/g	77

	Page
£, NA Percentages of total organic carbon and total organic matter in core one	٦٨
Percentage of total organic carbon total organic matter in core two	٦٨
۶٫۲۰ Percentage of total organic carbon total organic matter in core three	٧.
Percentage of total organic carbon total organic matter in core four	٧.
ξ , $\gamma \gamma \delta^{\gamma r}$ C values of soil samples along depth profiles	٧٣
ξ , Υ Comparison between δ Υ C $\%$ within root zone compared with the top layer of the four cores	٧٨
٤, Υ ε δ' N in ‰ and NO _r -N concentrations in ppm in sandy soil	۸١
£, Υο δ'°N in ‰ and NO _Y -N concentrations in ppm in clay soil	٨٢

LIST OF FIGURES

	Page
Y, \ Carbon isotope fractionation in Cr plants	٣
Y,Y Carbon isotope fractionation in C ₂ plants	٤
γ, γ δ' C ranges in different plant species	٥
7, ε Common ranges of δ'°N in natural sources	١.
۳,۱ Key map of the study area	٣١
T.Y Use a tall, slender jar to identify soil texture by measurement	٣٣
۳٫۳ Microwave digestion system	٣٦
۳,٤ Ion chromatography instrument X٦٠٠	٣٦
T,o Sample preparation sequence for 'C analysis in soil samples	٣٨
T,7 A special vacuum system containing programmable muffle furnace for cryogenic separation and purification of CO ₇	
T,V Isotope Ratio Mass Spectrometer Thermo Quest DELTA PLUS XL	٤٠
T,A Vacuum distillation line for separation of ammonium and nitrate	n _£ ٣
$^{\text{Y,9}}$ Vacuum line for converting of ammonium sulfate to N_{Y} gas	٤٥
٤,١ Variation in soil pH with depth in core one	٥,
٤,٢ Variation in soil pH with depth in core two	٥,
٤,٣ Variation in soil pH with depth in core three	٥١

	Page
٤,٤ Variation in soil pH with depth in core four	٥١
٤. ° Concentration of available Cd, Co, Cu, Fe, Mn, Ni, Pb, and Zn in core one	٥٣
٤,٦ Concentration of available Cd, Co, Cu, Fe, Mn, Ni, Pb, and Zn in core two	0 {
ور Concentration of available Cd, Co, Cu, Fe, Mn, Ni, Pb, and Zn in core three	٥٩
٤,٨ Concentration of available (Cd, Co, Cu, Fe, Mn, Ni, Pb, and Zn) in core four	٦.
٤,٩ Heavy metals concentration in potato roots in μg/g	٦٥
ξ, \. Heavy metals concentration in lettuce leaves μg/g	٦٧
٤,١١ Variation in TOM % in core one compared with core two	٦٩
٤,١٢ Variation in TOM % in core three compared with core four	٧١
ξ , Y Variation in δ C values with depth in core one	٧٤
ξ, \ \ \ Variation in δ \ \ C values with depth in core two	٧٤
ξ , 1° Variation in δ 1°C values with depth in core three	٧٦
ξ , 17 Variation in δ^{17} C values with depth in core four	٧٦
ξ , W Relation between % SOM and δ^{TC} in core one	YY
ξ , \A Relation between % SOM and δ^{1r} C‰ in core two	YY
ξ , 19 Relation between %SOM and δ^{17} C‰ in core three	٧٨
ξ , γ · Relation between %SOM and $\delta^{\gamma r}$ C‰ in core four	٧٨
٤,٢١ Concentration of NO _r -N with depth in core one	Λź

	Page
ξ , Υ Variation in δ $^{\circ}$ N with depth in core one	Λ£
٤,٢٣ Concentration of NOr-N with depth in core two	٨٤
$\xi, \forall \xi$ Variation in δ N with depth in core two	٨٤
٤,٢٥ Concentration of NOr-N with depth in core three	٨٥
ξ , $\forall \lambda$ Variation in δ N with depth in core three	٨٥
£, YV Concentration of NOr-N with depth in core four	٨٥
ξ , $\forall \Lambda$ Variation in δ $^{\circ}$ N with depth in core four	٨٥

. INTRODUCTION

The increase usage of sewage water as water resource for irrigating lands and sludge for improving soil characters causes serious hazards for soil, plants and groundwater. These hazards come from organic and inorganic pollutants present in effluent water and sludge which spread during the movements of these contaminates through the soil layers that retain some of it to a greater or lesser extent and seep the others to contaminate the subsurface water body, or intake into plants through their roots to the other parts. The continuous and extensive use of such water for long time will concentrate heavy metals and toxic organic compounds in soil.

Most attention is given to pollution arising from increasing human activities. Abu Rawash area is characterized by new urbanization areas, which randomly distributed within the cultivated areas. These areas are suffered from the absence of sewerage system for collecting domestic and sewage waters although the presence of Zinen and Abu-Rawash sewage stations that were constructed for collecting and treating wastewater of Giza area. Inadequate treatment processes have been occurred in these stations to minimize heavy and colloidal particles only. This poorly treated water is discharged through two main drains (Zinen and Barakat drains) which penetrate the cultivated areas. Also the additive waste from the urbanizing areas are directly discharge from their houses or indirectly by pumping wastewater and pour it in these drains.

The present work is mainly aim to use different techniques to trace the pollutant coming from sewage water and its movement in agriculture soil. These techniques can be used to give us a complete picture about the nature of these contaminants and its behavior in soil.

. REVIEW OF LITERATURE

. Stable carbon isotope

The natural abundance of the stable isotopes of C, N, H, and O has been successfully applied to various ecological and environmental studies. The natural abundance of C and N were found relevant. While the theory behind isotope fractionation is similar for these elements, the processes causing the fractionation are unique to the individual elements.

. Carbon isotope background information:

Carbon has two stable, naturally occurring isotopes: 17 C and 17 C with a natural abundance of 9 A, 1 A, and 1 A, respectively. These isotopes have slight differences in chemical and physical properties due to their mass differences. Measuring an absolute isotope ratio is not practical; a relative ratio is measured with reference to a standard sample as PDB (calcite structure from a fossil Belemnitella americana from the cretaceous Pee Dee Formation in South Carolina). The isotopic results are expressed as parts per thousand (per mil, or 9 A) due to the small isotopic variations between 17 C 17 C ratio of the sample and that of the PDB standard. Stable isotopes are commonly expressed in delta (3 A) notation, i.e 3 C value of $^{-1}$ A, indicates a sample with a 17 C 17 C ratio 9 PDB standard; a 3 C value of $^{+9}$ A indicates a sample with a 17 C 17 C ratio 9 PDB standard. The PDB standard greater than the PDB standard. The PDB standard are expressed relative to a standard as delta 17 C values, where:

$$u^{13}C = \frac{{}^{13}C/{}^{12}C_{sample} - {}^{13}C/{}^{12}C_{standard}}{{}^{13}C/{}^{12}C_{standard}} \times 1000$$

Soil organic carbon:

The two most important soil carbon reservoirs that are subject to isotopic fractionation are soil organic carbon (SOC) and carbonate Carbon (CC). Original SOC is a result of photosynthesis process in plant