

EFFICIENCY AND HYDRAULIC PERFORMANCE OF CANALS EXPOSED TO UNCONTROLLED MAINTENANCE PROGRAMS AND DREDGING

By

Ahmed Younis Elsayed Abdel Salam

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Irrigation and Hydraulics Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015

EFFICIENCY AND HYDRAULIC PERFORMANCE OF CANALS EXPOSED TO UNCONTROLLED MAINTENANCE PROGRAMS AND DREDGING

By Ahmed Younis Elsayed Abdel Salam

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Irrigation and Hydraulics Engineering

Under the Supervision of

Prof. Dr. Mohamed M. Atrees	Dr. Ali M. Soliman
Professor of	Associate Professor
Designs Irrigation Works	Irrigation and Hydraulic Department
Faculty of Engineering, Cairo University	Faculty of Engineering, Cairo University

Prof. Dr. Tarek A. El-Samman

.....

Professor of Hydraulics
Director of
Channel Maintenance Research Institute
National Water Research Center

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015

EFFICIENCY AND HYDRAULIC PERFORMANCE OF CANALS EXPOSED TO UNCONTROLLED MAINTENANCE PROGRAMS AND DREDGING

By Ahmed Younis Elsayed Abdel Salam

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Irrigation and Hydraulics Engineering

Approved by the Examining Committee

Prof. Dr. Mohamed Morsy Atrees

Prof. Dr. Mohamed Mohamed Salama

Prof. Dr. Mohamed Fawzy Bakry

(Vice president of National Water Research Center)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015 **Engineer's Name:** Ahmed Younis Elsayed Abdel Salam

Date of Birth: 07/02/1986 **Nationality:** Egyptian

E-mail: a.elsary@gmail.com

Phone: 01001442650

Address: 6 Moaaz st., El-Gon, Fayoum, Egypt

Registration Date: 01/03/2011 **Awarding Date:**/..../...... **Degree:** Master of Science

Department: Irrigation and Hydraulic Engineering

Supervisors:

Prof. Dr. Mohamed M. Atrees

Dr. Ali M. Soliman

Prof. Dr. Tarek A. El-Samman

Examiners:

Prof. Dr. Mohamed Morsy Atrees Prof. Dr. Mohamed Mohamed Salama Prof. Dr. Mohamed Fawzy Bakry

Title of Thesis:

Efficiency and hydraulic performance of canals exposed to uncontrolled maintenance programs and dredging

Key Words:

Canal Performance; Water Distribution Efficiency; Dredging; Channel Maintenance.

Summary:

As a result of implementation of uncontrolled maintenance programs and oppressive dredging to irrigation canals, these cross sections became deeper and wider. The main objective of the study is to identify the effects of regular and irregular changes in canal cross sections which may be occurred during improper maintenance. The research included the study of increasing canal width, lowering canal bed and increasing side slopes. El-gharaq canal was selected as a case study to illustrate the effect of irregular changes in cross sections in hydraulic characteristics. All scenarios were developed numerically using SOBEK 1D. For all scenarios water levels, velocities, section factor, conveyance efficiency and water distribution efficiency were compared with the corresponding designed values.

Acknowledgement

First of all, thanks to ALLAH

This research has been completed with the support and assistance of a large number

of people. I wish to express my gratitude to some of those who have helped and

inspired me during my research work.

Firstly, my sincere thanks to my supervisors and mentors Prof. Mohamed M.

Atrees, Prof. Tarek A. El-Samman and Dr. Ali M. Soliman for their guidance and

patience during my study. I sincerely thank them for their encouragement, expert

advice, technical assistance and patience. Their effort in creating an active and

inclusive research environment is appreciated.

I wish also to express my sincere thanks to the staff members of irrigation and

hydraulics in Cairo University for their help during studying.

A very special deep gratitude is offered to my family members for unceasing

sacrifices and encouragement and for their kind support, and sincere patience.

Finally, my best thanks to all those who, in one way or another, have helped in

making this work possible.

Eng. Ahmed Younis Elsary

I

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	I
TABLE OF CONTENTS	II
LIST OF TABLES	VI
LIST OF FIGURES	VIII
LIST OF PHOTOS	XII
SYMBOLS AND ABBREVIATIONS	XIII
ABSTRACT	XV
CHAPTER (1) INTRODUCTION	1
1.1 General	1
1.2 Research subject	1
1.3 Research objectives	2
1.4 Thesis outlines	2
CHAPTER (2) LITERATURE REVIEW	3
2.1 Introduction	3
2.2 Performance and efficiency of irrigation canals	3
2.2.1 Vegetation	5
2.2.2 Siltation	6
2.2.3 Random dredging	7
2.3 Research objectives	11

2.4 Research methodology	11
2.4.1 Case study canal	11
2.4.2 Data collection and measurements	12
2.4.3 Software used	17
2.4.4 Research procedures	17
CHAPTER (3) NUMERICAL MODEL	18
3.1 Introduction	18
3.2 Governing equations	18
3.2.1 Continuity equation	18
3.2.2 Momentum equation	19
3.2.3 The saint-venant equation	23
3.3 Numerical solution methods	23
3.3.1 Finite volumes method	23
3.3.2 Finite differences method	24
3.3.3 Finite elements method	25
3.4 Collected and measured data	26
3.5 SOBEK 1-D software	28
3.5.1 Software inputs	28
3.5.1.1 Canal path line	28
3.5.1.2 Cross sections definition	29
3.5.1.3 Bed friction	31
3.5.1.4 Time settings	31
3.5.1.5 Initial conditions	31
3.5.1.6 Boundary conditions	31
3.5.2 Software outputs	32
3.5.3 Model calibration	33

CHAPTER (4) SCENARIOS AND RESULTS	34
4.1 Introduction	34
4.2 Morphological status of El-Gharaq canal	34
4.3 Effect of increasing canal width on hydraulic performance	39
4.3.1 Water levels variation	41
4.3.2 Velocity variation	45
4.3.3 Section factor variation	49
4.3.4 Variation of water distribution efficiency	53
4.3.5 Variation of conveyance efficiency	56
4.3.6 Summary of effect of increasing the canal width	58
4.4 Effect of deepening the canal on hydraulic performance	59
4.4.1 Water levels variation	60
4.4.2 Velocity variation	64
4.4.3 Section factor variation	66
4.4.4 Variation of water distribution efficiency	70
4.4.5 Variation of conveyance efficiency	73
4.4.6 Summary of effect of lowering canal bed levels	75
4.5 Effect of increasing side slopes on hydraulic performance	76
4.5.1 Water levels variation	77
4.5.2 Velocity variation	80
4.5.3 Section factor variation	82
4.5.4 Variation of water distribution efficiency	85
4.5.5 Variation of conveyance efficiency	88
4.5.6 Summary of effect of increasing canal side slopes	91

4.6 Application on actual status of El-Gharaq canal	91
4.6.1 Water levels variation	91
4.6.2 Velocity variation	93
4.6.3 Variations of water conveyance	96
4.6.4 Variation of water distribution efficiency	97
CHAPTER (5) SUMMARY AND CONCLUSIONS	99
5.1 Summary	99
5.2 Conclusions	100
5.3 Recommendations	101
REFERENCES	102
Appendix (A)	108
Arabic Summary	

List of Tables

Table		Page
Table(2-1)	Relation between discharge Q , water depth y , cross setion area A , and wetted perimeter p with Section Factor (SF)	4
Table(3-1)	The designed data of El-Gharaq Canal	26
Table(3-2)	Designed data for weirs along El-Gharaq Canal	27
Table(3-3)	Designed data for sub-channels along El-Gharaq Canal	27
Table(3-4)	Measured discharge along El-Gharaq Canal	28
Table(4-1)	Morphological changes for El-Gharaq canal	35
Table(4-2)	Operation hypothetical Scenarios to study the effect of increasing the canal width on hydraulic performance	40
Table(4-3)	Changes occurred in water levels along El-gharaq canal due to increase of canal width	41
Table(4-4)	Changes occurred in water surface slope along El-gharaq canal due to increase its width	44
Table(4-5)	Average velocity ratios along El-Gharaq canal	46
Table(4-6)	Average section factor ratio along El-gharaq canal	51
Table(4-7)	Water distribution efficiency (WDE %) along El-gharaq canal due to increase of the canal width	53
Table(4-9)	The average conveyance efficiency for different scenarios along El-Gharaq canal due to increase the canal width	56
Table(4-10)	Operation hypothetical scenarios to study the effect of lowering the canal bed level on hydraulic performance	59
Table(4-11)	Changes occurred in water levels along El-gharaq canal due to lowering bed levels	60
Table(4-12)	Changes occurred in water surface slope along El-gharaq canal due to lowering bed level	63
Table(4-13)	Average velocity ratios along El-gharaq canal	64

Table(4-14)	Averaged section factor ratio along El-gharaq canal	68
Table(4-15)	Water distribution efficiency (WDE %) along El-gharaq canal due to lowering bed levels	70
Table(4-16)	average conveyance efficiency along El-Gharaq canal due to lowering bed levels	73
Table(4-17)	Operation hypothetical scenarios to study the effect of increasing canal side slope on hydraulic performance	76
Table(4-18)	Changes occurred in water levels along El-gharaq canal due to increase of its side slopes	77
Table(4-19)	Changes occurred in water surface slope along El-gharaq	80
Table(4-20)	canal due to increase of its side slopes Average velocities ratios % along El-gharaq canal	82
Table(4-21)	Average section factor ratios along El-gharaq canal	84
Table(4-22)	Water distribution efficiency (WDE %) along El-gharaq canal due to increase of its side slopes	85
Table(4-23)	Average conveyance efficiency along El-Gharaq canal due to increase of its side slopes	88
Table(4-24)	Changes occurred in water levels along El-Gharaq canal	93
Table(4-25)	Changes occurred in water head over sub-channels along El-Gharaq canal	94
Table(4-26)	Changes occurred in discharges along El-Gharaq canal	97
Table(4-27)	Changes of discharge of sub-channels along El-Gharaq canal	98
Table(4-28)	Changes occurred in W.D.E.% along El-Gharaq canal	98

List of Figures

Figure		Page
Fig.(2-1)	Sketch of reach of open channel in regime	6
Fig.(2-2)	Study area in Fayoum Region	13
Fig.(2-3-a)	Layout for El-Gharaq canal from km 0.000 to km 10.438	14
Fig.(2-3-b)	Layout for El-Gharaq canal from km 10.438 to km 22.175	15
Fig.(2-3-c)	Layout for El-Gharaq canal from km 22.175 to km 28.020	16
Fig.(3-1)	Cross sectional view of a channel (x-z plane) in a channel	19
Fig.(3-2)	Plan view (x-y plane) of a channel	20
Fig.(3-3)	Cross sectional view (y-z plane) of a channel	20
Fig.(3-4)	Example of a 2D uniform grid for finite difference method	25
Fig.(3-5)	The graphic display of the numerical model superimposes El-Gharaq canal over the GIS map.	29
Fig.(3-6)	Example of y-z cross section in the numerical model	30
Fig.(3-7)	Divided y-z cross section in the numerical model	30
Fig.(3-8)	Example of boundary nodes in channel reach with structure	32
Fig.(3-9)	Model calibration of El-Gharaq canal	33
Fig.(4-1)	Actual cross sectional area compared by designed cross sectional area	34
Fig.(4-2)	Changes occurred in cross sectional area along El-Gharaq canal from km 0.000 to km 13.500	36

Fig.(4-3)	Changes occurred in cross sectional area along El-Gharaq canal from km 13.500 to km 28.000	37
Fig.(4-4)	The percentage changes in cross sectional area along El-gharaq canal	38
Fig.(4-5)	Increment of canal width used in models of hypothetical scenarios for widening the canal	40
Fig.(4-6-a)	Changes of water level due to increasing canal width along El-gharaq canal from km 0.000 to km 15.000	42
Fig.(4-6-b)	Changes of water level due to increasing canal width along El-gharaq canal from km 15.000 to km 28.000	43
Fig.(4-7)	Changes in water surface slopes with change in cross sectional area due to increase the canal width	45
Fig.(4-8)	Changes in velocity relative to cross sections changes due to change the canal width	47
Fig.(4-9)	Averaged velocities for the hypothetical scenarios of increasing the canal width	48
Fig.(4-10)	Section factor for the hypothetical scenarios of increasing the canal width	50
Fig.(4-11)	Changes in section factor relative to cross sectional changes in case of increasing the canal width	52
Fig.(4-12)	Changes in wetted perimeter relative to cross sectional changes in case of increasing the canal width	52
Fig.(4-13-a)	Hydraulic efficiency of sub-channels along Elgharaq canal in case of increasing canal width	54
Fig.(4-13-b)	Hydraulic efficiency of sub-channels along Elgharaq canal in case of increasing canal width	55
Fig.(4-14)	Average discharges along El-gharaq canal for the scenarios of increasing canal width	57
Fig.(4-15)	Description of lowering canal bed level used in models.	59

Fig.(4-16-a)	Changes of water levels due to lowering canal bed along El-Gharaq canal from km 0.000 to km 15.000	61
Fig.(4-16-b)	Changes of water levels due to lowering canal bed along El-Gharaq canal from km 15.000 to km 28.000	62
Fig.(4-17)	Change in water surface slopes relative to cross sectional changes in case of lowering bed level of the canal	63
Fig.(4-18)	Velocities for the hypothetical scenarios in case of lowering bed level along El-Gharaq canal	65
Fig.(4-19)	Change in velocity relative to cross sectional changes in case of lowering bed levels	66
Fig.(4-20)	Averaged section factor for the hypothetical scenarios along El-Gharaq canal in case of lowering canal bed level	67
Fig.(4-21)	Change in section factor (SF) relative to cross sectional changes in case of lowering canal bed level	69
Fig.(4-22)	Change in wetted perimeter relative to Cross sectional changes in case of lowering canal bed level	69
Fig.(4-23-a)	Efficiency of sub-channels along El-Gharaq canal in case of lowering canal bed level	71
Fig.(4-23-b)	Efficiency of sub-channels along El-Gharaq canal in case of lowering canal bed level	72
Fig.(4-24)	Average discharges for the hypothetical scenarios along El-Gharaq canal in case of lowering canal bed levels	74
Fig.(4-25)	Increment of canal side slopes used in models of hypothetical scenarios	76
Fig.(4-26-a)	Changes of water levels due to increasing canal side slopes along El-Gharaq canal from km 0.000 to km 15.000	78

Fig.(4-26-b)	Changes of water levels due to increasing canal side slopes along El-Gharaq canal from km 15.000 to km 28.000	79
Fig.(4-27)	Averaged velocities for the hypothetical scenarios along El-Gharaq canal in case of increasing canal side slopes	81
Fig.(4-28)	Averaged section factor for the hypothetical scenarios along El-Gharaq canal in case of increasing canal side slopes	83
Fig.(4-29)	Change in section factor (SF) relative to Cross sectional changes in case of increasing canal side slopes	84
Fig.(4-30-a)	Efficiency of sub-channels along El-Gharaq canal in case of increasing canal side slopes	86
Fig.(4-30-b)	Efficiency of sub-channels along El-Gharaq canal in case of increasing canal side slopes	87
Fig.(4-31)	Average discharges for the hypothetical scenarios along El-Gharaq canal in case of increasing canal side slopes	89
Fig.(4-32)	Actual changes in water surface along the El-Gharaq canal	92
Fig.(4-33)	Changes in average velocity along El-Gharaq canal	95
Fig.(4-34)	Relation between velocity ratio and changes in cross sections along El-Gharaq canal	95
Fig.(4-35)	Changes in discharges along El-Gharaq canal	96