

SYNTHESIS AND CHARACTERIZATION OF SOME NEW HETEROCYCLIC COMPOUNDS CONTAINING N AND/OR S WITH EXPECTED BIOLOGICAL ACTIVITY

PRESENTED

BY

LABEEB MOHAMED SHAIF MOHAMED

B. Sc., 1998, Taiz University M. Sc., 2004, Jordan University

A Thesis Submitted for the Degree of Doctor of Philosophy in Science (ORGANIC CHEMISTRY)

To

CHEMISTRY DEPARTMENT FACULTY OF SCIENCE CAIRO UNIVERSITY GIZA, A.R. EGYPT

2010

APPROVAL SHEET FOR SUBMISSION

TITLE OF Ph. D. THESIS

SYNTHESIS AND CHARACTERIZATION OF SOME NEW HETEROCYCLIC COMPOUNDS CONTAINING N AND/OR S WITH EXPECTED BIOLOGICAL ACTIVITY

BY

LABEEB MOHAMED SHAIF MOHAMED

This thesis has approved for submission by the supervisors:

1-Prof. Dr. Fawzy Ali Attaby

Signature:

2-Dr. Azza Mohamed Abdel-Fattah

Signature:

3-Dr. Mohamed Mostafa Elsayed

Signature

Prof. Dr. Mohamed Mohamed Shokry

Signature

Chairman of Chemistry Department Faculty of Science-Cairo University

ABSTRACT

Name: Labeeb Mohamed Shaif Mohamed

Title of Thesis: Synthesis and characterization of some new heterocyclic compounds

containing N and/or S with expected biological activity.

Degree: Ph. D. Thesis, Faculty of Science Cairo University 2009–2010

This work has been carried out to investigate the chemical reactivity and synthetic potentiality of 2-thioxohydropyridine 11a-d via their reaction with several active halogencontaining compounds to afford the corresponding 2-alkylthiopyridine in some cases and thieno[2,3-b]pyridine directly in most cases. Thieno[2,3-b]pyridine-2-carbohydrazides obtained through the reaction of 2-ethoxycarbonylthienopyridines with hydrazine hydrate which in turn, used to obtain the corresponding pyrimidinones 20-26(a-d), 1,3,4oxdiazoles 28, 30(a-d), pyrazolothienopyridine derivatives (32a-d) thienopyridine-3pyrazolidine-3,5-diones amines (34a-d),pyrazolones (36a-d), Aminopyrazolopyridine obtained *via* the reaction of **11a-e** or **49a-e** with hydrazine hydrate which in turn, reacted with nitrous acid to give the diazonium salts 51a-e which coupled with several active-hydrogen containing reagents to give the corresponding triazines. The structures of all newly synthesized heterocyclic compounds were elucidated by considering the data of IR, ¹H NMR (δppm), mass spectra as well as that of elemental analyses. Anti-Alzheimer, anti COX-2 and anti-Cancer activities were investigated for all newly synthesized heterocyclic compounds.

Key Words: 2-Cyanoethanethioamide, 6-Thioxo-1,6-dihydro-2,3'-bipyridine-5-carbonitrile, 6-(Alkylthio)-4-aryl-2,3'-bipyridine-5-carbonitriles, Thieno[2,3-b]pyridine, Thieno[2,3-b]pyridine-2-carbohydrazides, pyrimidinones, 3-aminopyrazolo[3,4-b]pyridine, *N,N*-Dimethyl-aminopyrazole, 3-phenyl-1,3-thiazol-2(3*H*)-ylidene,

Supervisors: (1)- Prof. Dr. Fawzy Ali Attaby

(2)- Dr. Azza Mohamed Abdel-Fattah

(3)- Dr. Mohamed Mostafa Elsayed

Prof. Dr. Mohamed M. Shokry

Chairman of Chemistry Department Faculty of Science-Cairo University

DEDICATION

TO

MY GODFATHER
MOHAMMAD DERHEM

TO

MY DEAR SISTER
NORYA MOHAMMAD AL HAJ

TO

MY FATHER AND MOTHER

TO

MY WIFE NEDAL

TO

MY DAUGHTER MISK

TO

MY SON AMEEN

WHO GAVE ME HELP AND SUPPORT

Labeeb Mohamed Shaif Mohamed

<u>ACKNOWLEDGMENT</u>

"I do thank God for all gifts He gave Me"

The author of the present thesis wishes to express his deep thanks and sincere gratitude to prof. Dr. Fawzy A. Attaby, Professor of Organic chemistry, Department of Chemistry, Faculty of Science, Cairo University, Dr. Azza M. Abdel-Fattah, Associated of Organic chemistry, Department of Chemistry, Faculty of Science, Cairo University, and Dr. Mohamed M. Elsayed, Associated Professor, Research Units, Hi-Care Pharmaceutical Co., Cairo, Egypt, not only for suggesting the work investigated, but also for kind supervision, advice and valuable criticism though out the work performed. My thanks extended to my best friend Mukhtar Abdul-Rahman Nasher from Taiz university.

Thanks are also due to all the members of the research group of Prof. Dr. Fawzy A. Attaby for their constant and support.

Labeeb M. Shaif M.

AIM OF THE PRESENT WORK

The present work aimed and was designed to fulfill the following objectives:

- 1- Continuation of the effort done by this group of research at Cairo University in the field of heterocyclic synthesis of derivatives with expected biological and medicinal activities.
- 2- Synthesis of several new heterocyclic derivatives containing N and/or S using the laboratory available chemicals and reagents.
- 3- Establishment of the structures of the newly synthesized heterocyclic compounds by considering the data of IR, ¹H NMR (δppm),, mass spectra and the elemental analyses.
- 4- Synthesis of some of these heterocyclic derivatives via alternative routes which was also, used as a tool to confirm the structures of the newly synthesized heterocyclic derivatives.
- 5- Study of the most probable mechanisms leading to the formation of the obtained heterocyclic products and comparison of our results with others of similar ring systems.

CONTENTS

SUMMARY OF THE ORIGINAL WORK	1
GENERAL PART	1
THE SYNTHETIC POTENTIALITES OF 2-	
CYANOETHANETHIOAMIDE IN THE FIELD OF	
HETEROCYCLIC	
CHEMISTRY	
	1
INTRODUCTION	1
METHODS OF PREPARATION.	1
1- From Malononitrile	1
2- From Cyanoacetamide	1
3- From(Ethoxyethylidene)methane-1,1-dicarbonitrile	2
PHYSICAL PROPERTIES.	3
CHEMICAL REACTIONS	4
1-Synthesis of 2-(Aminothioxomethyl)-3-arylprop-2-enenitrile Derivatives	4
2-Synthesis of Thioxohydropyridinecarbonitrile Derivatives	6
i- By using aldehydes	6
ii- By using β-dicarbonyl compounds	12
iii- By using α,β-unsaturated carbonyl compounds	18
iv- By using α,β-unsaturated nitriles	38
v- By using 2-(aminothioxomethyl)-3-arylprop-2-enenitriles	45
vi- By using of 3-ethoxy-3-iminopropanonitrile hydrochloride	49
vii- By action of base	50
viii- By using cyanoacetic acid derivatives	50
3-Synthesis of Pyridinethiolate Derivatives	50
4-Synthesis of Sulfanylpyridinecarbonitrile Derivatives	61
5-Synthesis of Pyridine Derivatives	62
6-Synthesis of Fused Thioxohydropyridinecarbonitrile Derivatives	64
i- Synthesis of thioxoquinolinecarbonitrile derivatives	64
ii- Synthesis of polyalkylenethioxohydropyridinecarbonitriles	67
iii- Synthesis of thioxoisoquiolinecarbonitrile derivatives	69
iv- Synthesis of ethanothioxonaphthyridinecarbonitrile derivatives	70
v- Synthesis of polycyclic thioxohydropyridinecarbonitrile derivatives	71
vi- Synthesis of fused heterocyclic thioxohydropyridine Carbonitriles	72
7-Synthesis of Thiazole Derivatives	75
8-Synthesis of Inathianala Darivativas	82
9-Synthesis of Isothiazole Derivatives	83
10- Synthesis of Thiopyran Derivatives.	83
11- Synthesis of Pyran Derivatives.	86
12- Synthesis of Thioxphyrolecarbonitrile Derivatives	89
13- Synthesis of Thioxohydropyrimidinecarbonitrile Derivatives	90
14- Synthesis of Thioxohydropyrimidinecarbonitrile Derivatives	92
16- Synthesis of Ouinazolinecarbonitrile Derivatives	94
- 19 - 27 HURODO UL VIIII (17 MIII AZOHINA (17 MIII HIN 17 MII VIZ	

17- Synthesis of Thiazinone Derivatives	95
18- Synthesis of Pyrazole Derivatives	96
19- Synthesis of Pyridazine Derivatives	97
20- Synthesis of Triazine Derivatives	98
21- Synthesis of Pyrazine Derivatives	99
22- Synthesis of Oxazine Derivatives	99
23- Synthesis of Thiadiazole Derivatives	100
24- Synthesis of Triazolopyridine Derivatives	100
25- Synthesis of Thieno[2,3-b]pyridine Derivatives	100
26- Synthesis of Indenopyridine Derivatives	101
27- Synthesis of Pyrazolopyridopyrimidine Derivatives	102
28- Miscelleneous Reactions	102
ORIGINAL WORK	
Synthesis and characterization of some new heterocyclic compounds containing N	
and/or S with expected biological activity	107
EXPERIMENTAL	185
REFERENCES	238
ARABIC SUMMARY	

List of Figures

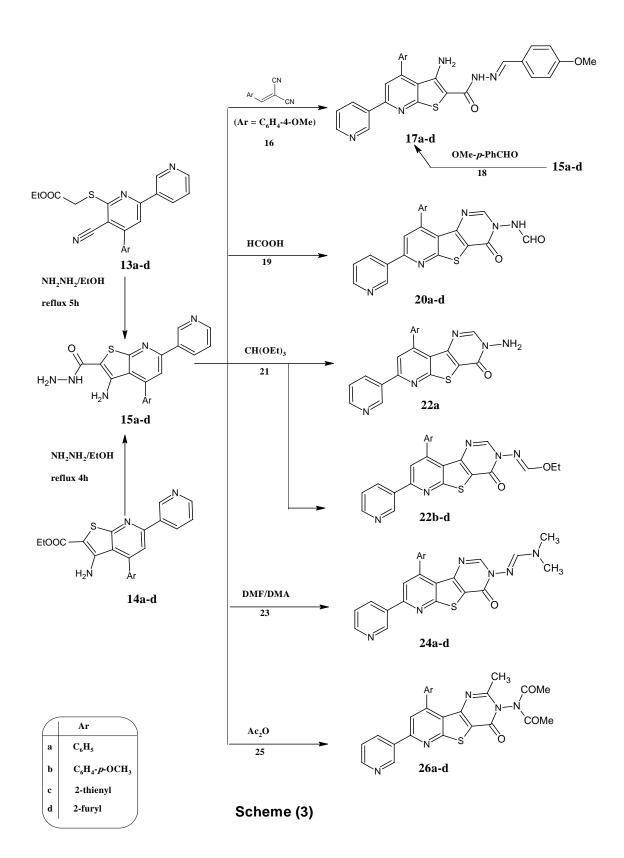
SUMMARY OF THE ORIGINAL WORK

SUMMARY OF THE ORIGINAL WORK

The following is the summary of the original work investigated and included in the present thesis:

- 1. The starting materials of the present study were synthesized by reacting 2-cyanoethane-thioamide (6) with 3-(aryl or heterocyclic)-1-pyridin-3-ylprop-2-en-1-one (4a-d) to give the corresponding 2-thioxohydropyridine-3-carbonitriles 11a-d as well as *via* the reaction of each of 4a-d, malononitrile (5), dispersed sulfur (3), morpholine. Compounds 11a-d were used as the good starting materials for the present study (cf. Scheme 1 and Experimental Part).
- 2. Compounds **11a-d** were reacted with active halogen containing compounds **12a-h** in basic medium to afford the corresponding 2-alkylthio derivatives **13a-p,r,t,v.a'** which in turn, cyclized to their corresponding thieno[2,3-b]pyridines **14** in some cases while in most cases the thieno[2,3-b]pyridines **14** were obtained directly *via* the reaction of **11a-d** with **12a-h** in ethanolic sodium ethoxide (cf. Scheme 2 and Experimental Part).
- 3. Thieno[2,3-b]pyridine-2-carbohdrazides **15a-d** were obtained through the reaction of **13a-d** or **14a-d** with hydrazine hydrate. Synthons **15a-d** were reacted with anisaldehyde (**18**) or anisalidenemalononitrile (**16**) to give the corresponding hydrazones **17a-d**. Also, they reacted with formic acid (**19**), triethylorthoformate (**21**), DMF-DMA (**23**), acetic anhydrate (**25**) to afford the corresponding pyrimidinone derivatives **20a-d**, **22a-d**, **24a-d** and **26a-d** respectively (cf, Scheme 3 and Experimental Part)).
- 4. The synthetic potentiality of compounds **15a-d** was investigated through their reaction with carbon disulfide, phenylisothiocyanate and glacial acetic acid to give the corresponding 1,3,4-oxadiazoles **28a-d**, **30a-d** and pyrazolothienopyridine derivatives **32a-d** respectively (cf, Scheme 4 and Experimental Part).
- 5. The synthetic potentiality of compounds **15a-d** was investigated further through their reaction with acetylacetone (**33**), ethyl acetoacetate (**35**) and diethylmaloneate (**37**) to give the corresponding thienopyridine-3-amines (**34a-d**), pyrazolones (**36a-d**), pyrazolidine-3,5-diones (**38a-d**) respectively (cf, Scheme 5 and Experimental Part).

Scheme 1


14a, b, c, d, e, f, g, h, i, j, k, l, [m], n, o, p, q, r, s, t, u, v, w, x, y, z, a', b'

 ${\bf 13}$ a, b, c, d, e, f, g, h, i, j, k, l, m, n, o ,p, [q], r,[s], t, [u], v, [w],[x], [y], [z],a', [b']

Scheme2

12	X	${f Z}$	R
a	Cl	COOEt	Н
b	Cl	$CONH_2$	Н
c	Br	COPh	Н
d	Cl	СООН	Н
e	Cl	CN	Н
f	Br	COC ₆ H ₄ -4-Cl	Н
g	Cl	COMe	Н
h	Cl	COMe	COMe

13	Ar	${f Z}$	R	14	Ar	Z
a	C_6H_5	COOEt	Н	a	C_6H_5	COOEt
b	C_6H_4 -4-OCH ₃	COOEt	Н	b	C_6H_4 -4-OCH $_3$	COOEt
c	2-thienyl	COOEt	Н	c	2-thienyl	COOEt
d	2-furyl	COOEt	Н	d	2-furyl	COOEt
e	C_6H_5	$CONH_2$	Н	e	C_6H_5	$CONH_2$
f	C_6H_4 -4-OCH ₃	$CONH_2$	Н	f	C_6H_4 -4-OCH $_3$	$CONH_2$
g	2-thienyl	$CONH_2$	Н	g	2-thienyl	$CONH_2$
h	2-furyl	$CONH_2$	Н	h	2-furyl	$CONH_2$
i	C_6H_5	COPh	Н	i	C_6H_5	COPh
j	C_6H_4 -4-OCH ₃	COPh	Н	j	C_6H_4 -4-OCH $_3$	COPh
k	2-thienyl	COPh	Н	k	2-thienyl	COPh
1	2-furyl	COPh	Н	1	2-furyl	COPh
m	C_6H_5	СООН	Н	m	C_6H_5	СООН
n	C_6H_4 -4-OCH $_3$	СООН	Н	n	C_6H_4 -4-OCH $_3$	СООН
О	2-thienyl	СООН	Н	0	2-thienyl	СООН
p	2-furyl	СООН	Н	p	2-furyl	СООН
q	C_6H_5	CN	Н	q	C_6H_5	CN
r	C_6H_4 -4-OCH $_3$	CN	Н	r	C_6H_4 -4-OCH ₃	CN
S	2-thienyl	CN	Н	S	2-thienyl	CN
t	2-furyl	CN	Н	t	2-furyl	CN
u	C_6H_5	COPh-4-Cl	Н	u	C_6H_5	COPh-4-Cl
v	C_6H_4 -4-OCH $_3$	COPh-4-Cl	Н	V	C_6H_4 -4-OCH $_3$	COPh-4-Cl
w	2-thienyl	COPh-4-Cl	Н	W	2-thienyl	COPh-4-Cl
X	2-furyl	COPh-4-Cl	Н	X	2-furyl	COPh-4-Cl
У	C_6H_5	COMe	Н, СОМе	y	C_6H_5	COMe
Z	C_6H_4 -4-OCH $_3$	COMe	Н, СОМе	Z	C_6H_4 -4-OCH ₃	COMe
a'	2-thienyl	COMe	Н, СОМе	a'	2-thienyl	COMe
b'	2-furyl	COMe	Н, СОМе	b'	2-furyl	COMe

