Impact of obesity on kidney disease

Thesis submitted for partial fulfillment of M D degree in internal medicine

Ву

Abdelrahman Nabil Abdelrahman

Master degree of internal medicine

Under supervision of

Professor Doctor Essam Mohamed Soliman

Professor of internal medicine and nephrology Faculty of medicine. Ain Shams University

Professor Doctor Khaled Hussein Abo Seif

Professor of internal medicine and nephrology Faculty of medicine. Ain Shams University

Professor Doctor Faisal Rehman

Professor of internal medicine and nephrology University of Western Ontario. London Canada

Assistant Professor Doctor Mona Hosny Abdelsalam

Assistant professor of internal medicine and nephrology Faculty of medicine. Ain Shams University

Doctor Essam Nour el dein Afify

Lecturer of internal medicine and nephrology Faculty of medicine. Ain Shams University

Faculty of medicine. Ain Shams University Y. 1.

Acknowledgements

I am very greatful to all of my supervisors, I owe an immeasurable debt to **Professor Doctor Essam Mohamed Soliman khedr** for giving me the chance to go to Canada to complete this study and gain western clinical and academic experience.

I greatly appreciate the constructive suggestions, help and support that I have received from **Dr. Faisal rehman,** my supervisor in Canada.

I particulary wish to thank **Dr. Andrew House**, professor of nephrology and statistics who gave me a great help in the approval, methodology and statistics of this study.

Finally I wish to thank **Professor Doctor Khaled Hussein Abo Seif** and **Doctor Essam Nour el dein Afify** for their support and encouragement.

List of contents

List of contentsi
List of abbreviationsiii
List of figuresiv
List of tablesvii
Introduction
Aim of the work ^۲
Review of literature ^٣
Obesity Obesity and kidney disease TV Link between obesity, diabetes and the
kidney ^{শণ} Obesity associated hypertension and kidney
disease Obesity and metabolic syndrome and the
kidney ^{۷۷}
Patients and methods\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Results\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Discussion	١٣٤
Conclusion	1 £ 7
Recommendations	1 £ ٣
Summary	١٤٤
References) £ V

List of abbreviations

ACR: albumin creatinine ration

Ang.ll: angiotensin ii BMI: Body mass index

CKD: chronic kidney disease

cr: creatinine

CRP: C-reactive protein

DBP: diastolic blood pressure

DM: diabetes mellitus

eGFR: estimated glomerular filteration rate

ESRD: end stage renal disease

FSGS: focal segmental gloerulosclerosis

FFA: free fatty acids IL-7: Interleukin-7

IRS: insulin resistance syndrome

NO: nitric oxide

ORG: obesity related glomerulopathy

PAPAR γ: peroxisome proliferator activated receptor γ

PKC: phosphor kinase C

RAAS: rennin angiotensin aldosterone system

SBP: systolic blood pressure TNF: tumor necrosis factor

US: united states

WAT: white adipose tissue

List of figures

Figures of the review of literature

Figure 1: Neuroccin the negative fed glucose production resistance.	edback regulation predispose to (Schwartz	on of energy bases weight gain a mad	alance and and insulin <i>Porte</i> ,
Figure 7: Effe natriuresis curve al., 77)	ct of obesity t	to shift renal	^{¿٣} l pressure e (Hall et
Figure 7: Summar hypertension and al., 7 · · 7)	ry of mechanisms renal disease. (H	s of obesity- inc all et	duced
Figure : Patho syndrome.(Bagby,		·	
Figure : Photon and obese (right methenamine, show membranes and ''')	nt) dog kidney wing thickening mesangium in o	ys stained work of glomerular obesity. (Hene	rith silver basement gar et al.,
Figure 7: Photon and obese (right)			

	howing expansion of bowman's space. (Henegar	et
and ob transfor	Y: Photomicrographs of glomeruli from lean(letestee (right) dog kidneys, showing staining with ming factor β in obesity. (Henegar et a	th
glomeru	\: A low power view of ORG shows focal segment closclerosis and glomerulomegaly. (Kambham et a	
discrete region a adhesion	9: A hypertrophied glomerulus contains to lesions of segmental sclerosis, one in the perihiland one in the peripheral tuft, with hyalinosis and to Bowman's capsule. (Kambham et a	ar nd
_	: A case of ORG with a massively hypertrophically containing a peripherally situated discre	ete
lesion (of segmental sclerosis. (Kambham et al., *	
Figure characteglomeruglomeruhistory		es se nd

glomerulus despite ne	s in ORG ephrotic	shows min	imal foot p	copic view rocess effac Kambham	ement
Figures o	<u>f this stu</u>	<u>ıdy</u>			
(based on relation	obesity to	and diabo			_
Figure 7: S based on	Showing o	comparison in relati	between di	ifferent cate ne slope	of e

Tables

Tables of the review of literature

	eight Classification b	-	
in experimen human	odynamic, neurohu tal obesity caused obesity.	by high fat die (Hall	t and in et
	inical criteria for agby, ۲۰۰٤)		
Tables of thi	s study		
groups(obese	nparing Quantitativ healthy versus no	on obese health	
groups(obese	mparing Qualitativ healthy versus no sts	on obese health	
	ions between ACR a	and different va	
the group	obese 		healthy

Table 4: Showing obese group			he	in the ealthy
Table : The bas				
diabetic nephropathy			177	
Table 7: Univari baseline variab eGFR	les in rel	lation to	the slope	
Table ^V : Univaria in relation eGFR	to	the	slope	
Table ^: The relation variables which examined by muregression	had a signif ultivariate a	icant univ nalysis an	ariate associ	ation,

Introduction

The worldwide prevalence of obesity has increased dramatically over the last several decades. In the United States alone, over 7.% of adults 7. to $\sqrt{\xi}$ years of age are now considered overweight or obese. (Hedley et al., $7...\xi$).

The incidence and prevalence of end-stage renal disease (ESRD) continues to grow steadily. (US Renal Data System Y...A). Although much less common than obesity, ESRD is an important health problem because of the high cost of renal replacement therapy, the associated high mortality and the effect on patients' quality of life. (Goeree et al., 1990).

Emerging evidence suggests that obesity may be independently related to kidney disease. For instance, animal studies have demonstrated that obesity per se can cause structural glomerular changes (Henegar et al., 4 ...).

Obesity increases sodium reabsorption, impairing naturesis. Obesity also causes renal vasodilatation and glomerular hyperfilteration that initially serves as compensatory mechanism to maintain sodium balance in the face of increased tubular reabsorption. In long term these changes create a haemodynamic burden on the kidneys that causes glomerular injurey. (Hall et al., *\.\cdot\.\cdot\.\cdot\.).

With prolonged obesity, there is urinary protein excretion and gradual loss of kidney function. (Hall et al., $\checkmark \cdot \cdot \checkmark$).

Elevated rates of urinary excretion predicts target organ damage, notably renal disease so the identification of obese albuminuric individuals has the potential of defining persons at increased risk of chronic kidney disease (chagnac et al., Y..).

There is also an evidence that obesity per se is a proinflammatory state. Obesity is associated with increased levels of acute phase reactants and cytokines as well as oxygen species. (bagby, $\checkmark \cdot \cdot \checkmark$).

Wu et al., Y...7 studied gene expression profiles in renal biopsies of six patients with obesity-related glomerulopathy. Compared with normal controls, the expression of genes related to lipid metabolism, inflammation and insulin resistance was significantly increased.

Aim of the work

Study the association and impact of obesity on chronic kidney disease.

Review of literature OBESITY

DEFENITION:

Body Mass Index:

The World Health Organization defines obesity as "abnormal or excessive fat accumulation in adipose tissue, to the extent that health is impaired". The degree of health impairment is determined by three factors: the amount of fat, the distribution of fat, and the presence of other risk factors (World Health Organization, **...*).

Body mass index (BMI) is calculated by dividing weight (in kilograms) by height (in meters squared). There is a strong curvilinear relation between BMI and relative body fat mass. The BMI has been proved relatively reliable, except in the extremes of age or height and in those individuals who are very fit and have a muscular build. Thus, the current practical definition of obesity is based on the relationship between BMI and health outcome rather than BMI and body composition (Fernandez et al., **.***).

Hill et al., **.** summarized the guidelines for classifying weight status by BMI. Large epidemiologic study has established that there is a strong relationship between BMI and mortality. Obese persons have higher risk for adverse health consequences than those who are overweight (Ross and Katzmarzyk, **.***).

A diversity of tables have been published to rapidly calculate the BMI of a subject and to assign a weight classification. An example is shown here (*Ogden et al.*, **••**).

■**TABLE \:** Weight Classification by Body Mass Index

Status	Obesity Class	Body Mass Index (kg/m [*])	Risk of Disease
Underweight		< 14.0	Increased
Normal		11.0-75.9	Normal
Overweight		To T9.9	Increased
Obesity	I	TTE.9	High
-	II	ro. • - r9 . 9	Very high
	III	> ٤ • . •	Extremely high

(Hill et al., Y...)

Factors Affecting BMI-Related Risk:

Several factors influence BMI-related health risk. For example, obese persons with excess abdominal fat are at increased risk for diabetes, hypertension, dyslipidemia, and ischemic heart disease than obese persons whose fat is located predominantly in the lower body (*Berggren et al.*, *\(\mathcal{f}\cdot\cdot\cdot\cdot\)). Visceral adiposity can be measured in a number of ways: by MRI scanning or CT scans of the abdomen or by dual X-ray absorptiometry (DEXA) with a specific abdominal window. Such techniques are expensive and difficult to apply to the assessment of central obesity in most clinical practice. However, assessment of visceral fat by a single CT slice at L\(\frac{\epsilon}{\epsilon} L\) become a recognized reference measure and is often used in obesity studies (*Caterson and Gill*, *\(\frac{\epsilon}{\epsilon} L\).

Other Methods Used for Determination of Obesity:

Bioelectrical impedance is a less expensive method for assessing body composition, but measures are a complex function of electrolyte and water content, and are not accurate without careful standardization ($Ryo \ et \ al., \ r \cdot \cdot \circ$).

Other inexpensive and practical methods to accurately localize body fat distribution in humans include:

- between the lower border of the ribs and the upper border of the iliac crest, taken from the side) is highly correlated with abdominal fat mass and is therefore often used as a surrogate marker for abdominal (upper body) obesity. Waist circumference values denoting increased risk for metabolic diseases have been proposed on the basis of epidemiologic data. For men, a waist circumference greater than '' cm (' inches) and, for women, a waist circumference greater than '' cm (' inches) have been proposed as cutoff values for increased risk (Stewart et al., ' '').
- The waist to hip ratio (WHR). A WHR of more than '..' in men and '.^o in women identify subjects with abdominal fat accumulation (*Kopelman*, '...).

Another factor that modifies the risk of obesity-related complications is weight gain during adulthood. In both men and women, weight gain of ° kg or more since age '^ to ' years is associated with an increased risk of diabetes, hypertension, and coronary heart disease, and the risk of disease increases with the amount of weight gained (Koh-Banerjee et al., ' ' · · !).

Risks of developing obesity-associated diabetes or cardiovascular disease can also be modified by aerobic fitness. The incidences of diabetes and cardiovascular mortality were lower in those who were fit, as defined by maximal ability to consume oxygen during exercise, than in those who were unfit (Nagano et al., **.**).