Systematic Review of Cochleostomy versus Round window Insertion of Electrodes in Cochlear Implant patients

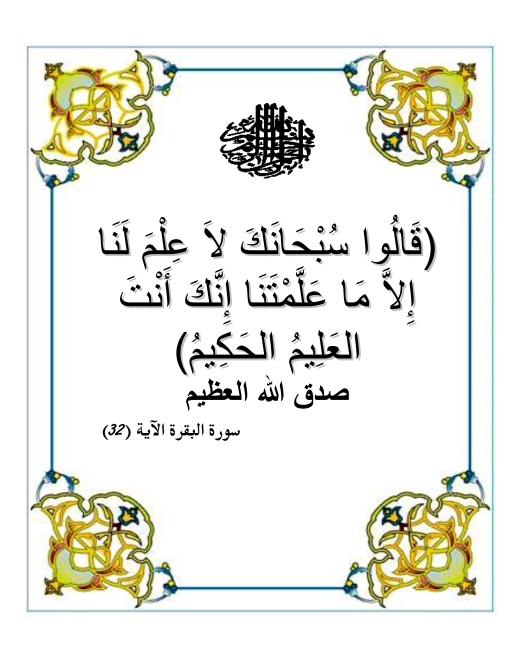
Thesis
Submitted for partial fulfillment of Master degree
in Otorhinolaryngology

By Omar Mustafa Yusuf Yassin

M.B., B.CH. Faculty of Medicine AinShams University

Under Supervision of Prof.Dr / Amr Gouda Shafik

Professor of Otorhinolaryngology Faculty of Medicine-Ain Shams University


Prof.Dr /Mohamed Amir Hassan

Professor of Otorhinolaryngology Faculty of Medicine-Ain Shams University

Dr/Mohamed Shehata Taha

Assistant Consultant of Otorhinolaryngology
Ain Shams University Hospitals

Faculty of Medicine
Ain Shams University
2014

Acknowledgment

I would like to express my very great appreciation to **Prof. Dr Amr Gouda Shafik**, for his valuable and constructive suggestions during the planning and development of this research work. His willingness to give his time so generously has been very much appreciated.

I would like to express my deep gratitude to **Prof. Dr Mohamed Amir Hassan**, for his patient guidance, enthusiastic encouragement and useful critiques of this research work. I would also like to thank **Dr. Mohamed Shehata Taha**, for his advice and assistance in keeping my progress on schedule

List of Contents

Title	Page No.
List of Figures	i
List of Tables	iv
List of Abbreviations	vi
Introduction	1
Aim of the Work	4
Review of Literature	5
Materials and Methods	49
Results	56
Discussion	81
Conclusion	89
Recommendation	90
Summary	91
References	94
Arabic Summary	<u> </u>

List of Figures

Figure No.	$\it Title$	Page No.
Figure (1):	A) Bony inner ear showing bony coc well as vestibular semicircular canals	
	B) Higher magnification of members labyrinth after removal of bony consults	ochlear
Figure (2):	Cross sections through guinea pig of showing membranous labrynith structure within bony cochlea	ructure
Figure (3):	A) Diagram of the cochlear duct de the location and cellular composition organ of Corti	of the
	B) Cross-section through the mocochlea showing a higher magnification view of the organ of Corti	rication
Figure (4):	A) Scanning electron micrograph shorganization of stereocilia	
	B) Higher magnification of stereocilia	11

	C) Transition electron microscopy of
	cochlear hair cell stereocilia11
Figure (5):	Components of cochlear implant system21
Figure (6):	Skin incision and flap elevation27
Figure (7):	Evolution of incisions of cochlear implantations
Figure (8):	Electrode in cochleostomy (arrow) with excess electrode coiled in mastoid cavity (arrow head)
Figure (9):	Round window membrane where electrode will be placed
Figure (10):	Forest plot depicting odds ratio of hearing preservation for cochleostomy (intervention A) versus round window (intervention B)62
Figure (11):	Funnel plot for publication bias as assessed using estimated odds ratio
Figure (12):	Forest plot depicting risk ratio of hearing preservation for cochleostomy (intervention A) versus round window (intervention B)66
Figure (13):	Funnel plot for publication bias as assessed using estimated risk ratio

Figure (14):	Forest plot depicting risk difference of
	hearing preservation for cochleostomy
	(intervention A) versus round window
	(intervention B)70
Figure (15):	Funnel plot for publication bias as assessed using estimated risk difference
Figure (16):	Forest plot depicting mean difference in insertion depth for cochleostomy (intervention A) versus round window (intervention B)
Figure (17):	Funnel plot for publication bias as assessed using estimated difference in mean insertion depth
Figure (18):	Forest plot depicting standardized difference in insertion depth for cochleostomy (intervention A) versus round window (intervention B)
Figure (19):	Funnel plot for publication bias as assessed using standardized difference in mean insertion depth

List of Tables

Table No.	Title Page No.
Table (1):	Brief summary of cochlear implant development through years
Table (2):	FDA approved cochlear implant devices44
Table (3):	Excluded articles and the reason for exclusion
Table (4):	Summary of included articles56
Table (5):	Quality assessment and level of evidence of included articles
Table (6):	Summary of studies included in meta- analysis for hearing preservation
Table (7):	Odds ratio for hearing preservation60
Table (8):	Tests of null effect and tests of heterogeneity of odds ratio estimates
Table (9):	Risk ratio for hearing preservation64
Table (10):	Tests of null effect and tests of heterogeneity of risk ratio estimates

Table (11):	Risk difference for hearing preservation68
Table (12):	Tests of null effect and tests of heterogeneity of risk difference estimates69
Table (13):	Summary of studies included in meta- analysis for insertion depth
Table (14):	Difference in insertion depth between cochleostomy and round window
Table (15):	Test of null effect and tests of heterogeneity of mean difference in insertion depth74
Table (16):	Standardized difference in insertion depth between cochleostomy and round window77
Table (17):	Tests of null effect and tests of heterogeneity of standardized difference in insertion depth78

List of Abbreviations

CF Characteristic frequency

CNC...... Consonant-vowel-consonant

CUNY..... City University of New York

EAS..... Electro acoustic stimulation

FDA Food and drug administration

FEM..... Fixed effect method

Fig.....Figure

HINT Hearing in noise test

HP Hearing preservation

IHC Inner hair cell

LOC Lateral olivocochlear

LSO..... Lateral superior olive

MLNT..... Multisyllabic lexial neighbourhood test

MOC..... Medial olivocochlear

MPTA..... Mastoidectomy with posterior tympanotomy approach

MSO...... Medial superior olive

NYU...... New York University

OCB...... Olivocochlear bundle

OHC..... Outer hair cell

OR.... Odds ratio

R/S Reciever stimulator

RD..... Risk difference

REM Random effect method

RR..... Risk ratio

SE..... Standard error

TEM..... Transition electron microscopy

INTRODUCTION

A cochlear implant is an electronic device designed to improve or enable hearing for people with hearing impairment disabilities. Unlike typical hearing aids, which are worn externally, cochlear implants constitute an external device and an internal implant. Also, hearing aids simply amplify sounds to enhance sound perception, whereas cochlear implants bypass the outer and middle ear to electrically stimulate acoustic nerves within the auditory system (Moctezuma A et al., 2011).

From what once seemed impossible and outrageous, after decades of research and development, modern cochlear implants had advanced to enable the comprehension of sound and speech for those with hearing disabilities. They allow the possibility of communication, development of language skills, and media enjoyment such as music and television. The discovery that electrical current could convey meaningful sound to the brain was an unthinkable breakthrough (Moctezuma A et al., 2011).

The expanding indication criteria for cochlear implantation because of the improved postoperative hearing results lead to a worldwide increase in patients with residual hearing who are fitted with a cochlear implant. In the last decade, several research groups have explored various methods of implanting different electrode arrays in the cochlea to

preserve the residual hearing and combine acoustic and electric speech processing. The different electrode arrays (hybrid), specifically developed for this purpose, vary in several aspects, shorter length, more flexible, and thinner. Although much attention has been given to minimize trauma by optimizing the electrode design, a minimal traumatic opening of the cochlea and insertion of the electrode is essential for hearing preservation (Havenith et al., 2013).

Historical Overview:

Table (1) shows a brief summary of the cochlear implant development through the years. An overview of the history provides an understanding of the slow progression and breakthrough.

Year	Event
1800	Allesandro Volta used electrical current to stimulate his inner ear.
1950	Lundberg performed the first direct stimulation of auditory nerve.
1956	Jack Urban and Dr. William House designed a workable/wearable implant.
1972	Dr. William House builds the first wearable signal processor.
1977	Adam Kissiah proposed the fundamental design of cochlear implant (US patent 4063048) Implantable Electronic Hearing Aid, December 13.
1978	Dr. Graeme Clark and Dr. Brian Pyman operate the

Introduction

	first multi-channel cochlear implant.
1980	US Food and Drug Administration (FDA) began regulation of cochlear implants.
1984	The first approved commercial device by the FDA for adults implant: House/3M.
1985	Cochlear Corp. Nucleus® 1 system approved by USFDA.
1989	Medical Electronics Corporation (MED-EL) founded by Ingeborg and Erwin Hochmair.
1990	FDA approved implant for children above 2 years old.
1996	Advanced Bionics Corporation (AB) implant approved by USFDA.
2000	FDA approved implant for children above 12 months of age.

AIM OF THE WORK

Systematic review of the literature in trial to answer the question whether cochleostomy or round window approach is better as regard electrode insertion depth and post operative residual hearing.