THE EFFECT OF INCREMENT THICKNESS AND LIGHT CURING DISTANCE ON FLEXURAL STRENGTH, MICROHARDNESS AND CYTOTOXIC BEHAVIOR OF TWO BULK-FILL RESIN-BASED MATERIALS

Thesis

Submitted to the Faculty of Dentistry, Ain Shams University in Partial Fulfillment of the Requirements for the PhD Degree in Conservative Dentistry

By

Dena Safwat Mohamed Mustafa

B.D.S, Ain Shams University, 2004

M.Sc., Ain Shams University, 2011

Supervisors

Dr. Farid Mohammed Sabry El-Askary

Professor and Head of Operative Dentistry Department
Faculty of Dentistry
Ain Shams University

Dr. Khaled Aly Nour

Assistant Professor of Operative Dentistry

Faculty of Dentistry

Ain Shams University

<u>Acknowledgements</u>

الحمد لله الذي تتم بفضله الصالحات

I would like to thank **Dr. Farid Mohammed Sabry El-Askary**, *Professor and Head of Operative Dentistry Department*, *Faculty of Dentistry*, *Ain Shams University*, for challenging us to persevere and *x*-ceeding our own limitations throughout the course of this work and for his supervision *x*traordinaire.

Also, I would like to thank **Dr. Khaled Aly Nour,** *Assistant Professor of Operative Dentistry, Faculty of Dentistry, Ain Shams University*, for his constant valuable advice, *x*-treme patience, and support when it counted the most.

I would also like to thank **Eng. Effat Mokhtar** for the manufacturing of the molds necessary for specimens' preparation.

I would also like to extend my sincere thanks go to my esteemed colleagues at testing facilities for their most appreciated help and cooperation;

Dr. Ahmed El-Banna,

Assistant Lecturer, Dental Materials Department, Ain Shams University.

Dr. Lamia Moharam,

Lecturer, Operative Dentistry Department, National Research Center.

Dr. Serag ElDin ElBeheiri,

Technical Assisting Director Cell Culturing, Tissue Culturing Lab, Vacsera.

I would like to thank my colleagues at *Operative Dentistry Department, Ain Shams University* for their support especially fellow *Assistant Lecturer* **Dr. Rana AbdelRehim**, whom I thank not only as a colleague but a friend and sister; to whom I owe the completion of this work, against all odds.

Finally, I would like to thank VOCO Company (VOCO, GmbH, Cuxhaven, Germany) for supplying the materials used in this study.

Dedication

To Mom and Dad.

I stand tall because of you. You are my reason.

Sig Srother

I know you always got my back.

LIST OF CONTENTS

List of Tables	ii	
List of Figures	iv	
Introduction	1	
Review of Literature.		
-Resin Composite Restorations: Clinical Challenges and		
Demands	3	
-Photopolymerization: Efficiency and Implications	7	
-Light Attenuation: The Dilemma of Adequate Cure	14	
-Material Testing	34	
Flexural Strength Testing	35	
Hardness Testing	43	
Cytotoxic Behavior Testing	48	
-Bulk-Fill Resin Composites	56	
Aim of the Study	73	
Materials and Methods	74	
Results	91	
Discussion	109	
Summary and Conclusions		
References 1		
Arabic Summary		

LIST OF FIGURES

<u>Figure</u>	Figure Title	Pag
No.	<u>= -A</u>	<u>e</u>
Figure	The four CORE TM variables.	9
1:		
Figure 2:	MARC® Resin Calibrator Assembly for researchers and manufacturers; laptop preloaded with MARC® software, benchmark TM for stabilizing and positioning of light curing unit, and two cosine-corrector sensors (4mm in diameter as ISO/DOC mould).	12
Figure 3:	Experimental set-up as portrayed by <i>de Jong</i> et al; a) class II composite restoration in sample tooth with layer technique and dimensions, b) arrows indicate indents on the axial side of restoration	23
Figure 4:	Diagram of average distance reported between tip of light guide resting on cusp tip and cavity floor (gingivally extending just beyond CEJ) as portrayed by <i>Price</i> et al.	25
Figure 5:	Divergence with a parallel light guide (left), with a turbo light guide (center) and without a light guide (right), as illustrated by <i>Mahn</i> .	28
Figure 6:	Images of the fibre-optic element at both ends of a Turbo light-guide at 1.6X and 6.4X magnification, shared by <i>Price</i> et al. Note larger total bundle diameter as well as individual filament diameter in images of proximal/entry end (left) compared to distal/exit end (right).	29

Figure 7:	Schematic Diagram of cone of light generated in optic fibres following the law of specular reflection, as portrayed by	30
	Corciolani et al. R value is the ratio of entry (proximal end P) to exit (distal end D) diameters.	
Figure 8:	Schematic structure of the different LCU designs used as portrayed by <i>Ogisu</i> et al.; a) conventional, b) experimental.	32
Figure 9:	UltraLume 5 LED Dental Light Curing Unit; (UltraDent Products Inc., UT, USA) investigated by <i>Palin</i> for its large oval-footprint lens. Curing tip contains central blue diode and four peripheral violet diodes	42
Figure 10:	Schematic representation of methods of structuring the material-cell interface during in-vitro tests as portrayed by <i>Wataha</i> .	53
Figure 11:	Split copper mold for flexural strength specimens; assembled, and disassembled.	76
Figure 12:	Curing at 0mm distance resting on split copper mold; a) 2mm, and b) 4mm specimens.	78
Figure 13:	Representative diagram for overlap cure of flexural strength specimen.	78
Figure 14:	Rectangular stainless steel pieces used for 10mm light curing distance; 8mm- and 6mm- high respectively.	79
Figure 15:	Schematic representation of curing assembly at 10mm light curing distance.	79
Figure 16:	Assembly to perform curing at 10mm distance; for a) 2mm specimens, b) 4mm and 2mm x 2mm specimens.	79

Figure	Final specimen for flexural strength testing.	80
17: Figure 18:	a)Universal Testing Machine with testing assembly in place.b) Upper jig of testing machine holding third rod centralized in relation to 12mm-bar specimen.	81
Figure 19:	Cylindrical Copper Mold with 4mm-diameter central opening; assembled and disassembled.	82
Figure 20:	Assembly to perform curing at 0mm distance; for a) 2mm specimens, b) 4mm and 2mm x 2mm specimens.	83
Figure 21:	Cylindrical copper rings used for 10mm light curing distance; 8mm- and 6mm- high, respectively.	83
Figure 22:	Assembly to perform curing at 10mm distance; for a) 2mm specimens, b) 4mm and 2mm x 2mm specimens.	83
Figure	Final specimen for microhardness testing.	84
23: Figure 24:	InnovaTest Nexus 4000™ Vicker's Microhardness Tester.	85
Figure	Tissue Culture Flasks.	86
25: Figure 26:	96-well cell culture plate.	86
Figure 27:	Cylindrical copper mold with 6mm-diameter central opening; assembled and disassembled.	87
Figure	Final specimen for cytotoxicity testing.	87
28: Figure2	Culture media added and its volume adjusted using multi-channel	88

9:	pipette.	
Figure 30:	ELISA Microplate Reader.	89
Figure 31:	Bar chart showing the effect of bulk-fill, resin composite material on flexural strength.	93
Figure 32:	Bar chart showing the effect of increment thickness on flexural strength for all experimental groups.	95
Figure 33:	Bar chart showing the effect of light curing distance on flexural strength.	96
Figure 34:	Bar chart showing the effect of bulk-fill, resin composite material on relative microhardness %.	99
Figure 35:	Bar chart showing the effect of increment thickness on relative microhardness %.	101
Figure 36:	Bar chart for the effect of light curing distance on relative microhardness %.	102
Figure 37:	Bar chart showing effect of bulk-fill, resin composite on cytotoxic behavior.	105
Figure 38:	Bar chart showing the effect of increment thickness on cytotoxic behavior.	107
Figure 39:	Bar chart showing the effect of light curing distance on cytotoxic behavior.	108

LIST OF TABLES

Table Title

Table No.

Table 1:	Materials, compositions, manufacturers.
Table 2:	Experimental variables within study.
Table 3:	Interaction of variables.
Table 4:	Three-Way ANOVA for the effect of bulk-fill, resin composite, increment thickness, light curing distance and their interaction on flexural strength.
Table 5:	Means ± Standard Deviations for the effect of bulk-
	fill, resin composite material on flexural strength.
Table 6:	Means ± Standard Deviations for the effect of
	increment thickness on flexural strength.
Table 7:	Means ± Standard Deviations for the effect of light curing distance on flexural strength.
Table8:	Three-Way ANOVA for the effect of resin composite
	material, increment thickness, light curing distance
	and their interactions on the relative microhardness %.
Table 9.	Means ± Standard Deviations for the effect of bulk-
I unic).	fill, resin composite material on relative
	in, resin composite material on relative

Table 10: Means \pm Standard Deviations for the effect of

increment thickness on relative microhardness %.

microhardness %.

- **Table 11:** Means \pm Standard Deviations for the effect of light curing distance on relative microhardness %.
- Table 12: Three-Way ANOVA for the effect of bulk-fill, resin composite, increment thickness, light curing distance and their interaction on cytotoxic behavior.
- **Table 13:** Means ± Standard Deviations for the effect of bulkfill, resin composite material on cytotoxic behavior
 expressed as % cell death.
- **Table 14:** Means ± Standard Deviations for the effect of increment thickness on cytotoxic behavior expressed as % cell death.
- **Table 15:** Means ± Standard Deviations the effect of light curing distance on cytotoxic behavior expressed as % cell death.