الكشف الجزيئى عن جينات الفان vanA and vanB) في المكورات المعوية المضادة للفانكوميسين المعزولة من مرضى أمراض و أورام الدم

رسالة

للحصول على درجة الماجستير في العلوم الطبية الأساسية (علم الكائنات الدقيقة و المناعة)

مقدمة من

الطبيبة / ولاء شوقي السيد خاطر

بكالوريوس الطب و الجراحة كلية الطب – جامعة عين شمس

تحت إشراف

الدكتور / فاتن مصطفى على

أستاذ مساعد علم الكائنات الدقيقة و المناعة كلية الطب – جامعة عين شمس

الدكتور / رشا أحمد رضا نصر

مدرس علم الكائنات الدقيقة و المناعة كلية الطب – جامعة عين شمس

الدكتور / تامر محمد أحمد إبراهيم

مدرس أمراض الباطنة بوحدة أمراض الدم كلية الطب – جامعة عين شمس

> كلية الطب جامعة عين شمس -2006-

Molecular Characterization of Van genes (VanA and VanB) in Vancomycin-Resistant Enterococcus spp. (VRE) Isolated from Hematology-Oncology Patients

Thesis

Submitted in the partial fulfillment of The Master Degree in Basic Medical Science (Microbiology and Immunology)

Presented by

Walaa Shawky Elsayed Khater M.B., B.Ch.

Faculty of Medicine, Ain Shams University

Under the Supervision of

Dr. Faten Mostafa Ali

Assistant Professor of Microbiology and Immunology Faculty of Medicine, Ain Shams University

Dr. Rasha Ahmed Reda Nasr

Lecturer of Microbiology and Immunology Faculty of Medicine, Ain Shams University

Dr. Tamer Mohamed Ahmed Ibrahim

Lecturer of Internal medicine and Hematology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University -2006-

ACKNOWLEDGEMENT

First and for most, thanks to **ALLAH** "The Most Merciful".

I would like to express my deep appreciation and sincere gratitude to **Dr. Faten Mostafa Ali,** Assistant Professor of Microbiology and Immunology, Ain Shams University, for her active cooperation, deep concern and enthusiastic encouragement throughout the study.

I do feel grateful to **Dr. Rasha Nasr,** Lecturer of Microbiology and Immunology, Ain Shams University, for supervising the work and continuous advice and support.

I owe special thanks **to Dr. Tamer Ibrahim,** Lecturer of Internal Medicine and Hematology, Faculty of Medicine, Ain Shams University, for his valuable guidance.

Particular thanks to **Dr. Mohamed Abdelmaksoud**, from The Central Health Laboratories Cairo, for his help and cooperative attitude to complete the work.

I would like to express sincere thanks to all Staff Members of Microbiology and Immunology Department, Ain Shams University for their kind support.

Walaa Khater

CONTENTS

	Subject	Page
List of T	Tables	i
List of F	ligures	iii
	Abbreviations	V
Ι.	Introduction	1
II.	Aim of The Work	4
III.		5
111.	The Genus Enterococcus	5
	Definition	5
	History	5
	Classification of enterococcus species	6
	Growth requirement	7
	Natural Habitat	7
	Pathogenicity and virulence factors	8
	Epidemiology	10
	Factors predisposing to enterococcal	
	infections	11
	Enterococcal Infections	12
	Identification	14
	Typing Methods Antimicrobial Resistance of Enterococci	18 21
	Treatment of enterococcal infection	27
	Vancomycin Resistant Enterococci	29
	Vancomycin Vancomycin	29
	Emergence of VRE	30
	Types of Vancomycin Resistance	32
	Different phenotypes and genotypes of	
	Glycopeptide Resistant Enterococci	
	(GRE)	32
	Mechanism of Resistance	35
	Vancomycin Dependant Enterococci	
	(VDE)	40
	Epidemiology of VRE	42
	Reservoirs of VRE	43
	VRE Colonization versus Infection	46
	Risk Factors for Infection with VRE	48
	Clinical Impact of VRE	50

	Transmission of VRE	52
	Identification of VRE	53
	Typing of VRE	56
	Treatment of VRE	57
	Infection Control Measures for VRE	62
	Screening procedures for detecting VRE	
	in hospitals	75
	Infections in Hematological-Oncological	
	Patients:	78
	Spectrum of microbial pathogens in	
	haematological malignancies	82
	Fever in neutropenic patients	83
	Laboratory investigation of neutropenic	
	fever of unknown origin	85
	Prophylaxis of infections	86
	Empiric therapy of fever of unknown	
	origin	87
	Subsequent antimicrobial therapy	89
IV.	Patients and Methods	90
V.	Results	105
VI.	Discussion	125
VII.	Summary and Conclusion	136
VIII.		138
IX.	References	139
X.	Appendix	
XI.	Arabic Summary	

List of Abbreviations

AAC Antibiotics Associated Colitis

AFLP Amplified Fragment Length Polymorphism

ALL Acute Lymphocytic Leukemia

AME Aminoglycoside Modifying Enzymes

AML Acute Myeloid Leukemia

ANC Absolute Neutropenic Count

API Analytical Profile Index

ARA Arabinose

BHI Brain Heart InfusionC. difficile Clostridium difficile

CDC Centers For Disease Control and Prevention

CFU Colony Forming Unit

CML Chronic Myeloid Leukemia

CMV Cytomegalo virus

CoNS Coagulase Negative Staphylococcus

D-Ala-D-Ala D-alanine-D-alanine

D-Ala-D-Lac D-alanine-D-lactate

D-Ala-D-Ser D-alanine-D-serine

DIC Disseminated Intravascular Coagulopathy

DNA Deoxy Ribonucleic Acid

dNTP deoxy-nucleotide triphosphates

E. faecalis Enterococcus faecalis

E. faecium Enterococcus faecium

FUO Fever of Unknown Origin

G+C Guanine + Cytosine

GIT Gastrointestinal tract

GRE Glycopoetide Resistant Enterococci

HAIs Hospital-Acquired Infections,

Health Care Associated Infections

HCWs Health Care Workers

HICPAC Hospital Infection Control Practices Advisory Committee

HLAR High Level Aminoglycoside Resistance

ICU Intensive Care Unit

IV Intravenous

LAP Leucine Aminopeptidase

MAN Mannitol

MDR Multiple Drug Resistant

MGP Methyl-A-D-Glucopyranoside

MIC Minimum Inhibitory Concentration

MOT Motility

MRSA Methicilin Resistant Staphylococcus aureus

NaCl Sodium Chloride

NCCLS National Committee For Clinical Laboratory Standards

NHL Non Hodgkin Lymphoma

NNISS The National Nosocomial Infections Surveillance System

PBP Penicillin Binding Protein

PCR Polymerase Chain Reaction

PFGE Pulsed-Field Gel Electropheresis

PG Peptidoglycan

PIG Pigment

PYR Pyrolidonyl-B-Naphthylamide

PYU Pyruvate

RAF Raffinose

RAPD Randomly Amplified Polymorphic DNA

rRNA Ribosomal RNA

S. aureus Staphylococcus aureus

SBL Sorbitol

SCT Stem Cell Transplantation

SOR Sorbose
SUC Sucrose
TEL Tellurite

UTI Urinary Tract Infections

UV Ultraviolet

VBNC Viable But Non-Culturable Cells

VDE Vancomycin Dependant Enterococci

VRE Vancomycin Resistant Enterococci

VRSA Vancomycin Resistant Staphylococcus aureus

VSE Vancomycin Susceptible Enterococci

List of Tables

Number	Title	Page
Tables of I	Review of Literature:	
Table (1)	Classification of enterococcus species	6
Table (2)	Phenotypic characteristics used for the	
()	identification of <i>Enterococcus</i> species and	
	some physiologically related species of	
	other gram-positive cocci.	17
Table (3)	Enterococcal aminoglycoside-modifying	1,
Tuble (5)	enzymes	24
Table (4)	Resistance to Glycopeptides in	21
1 abic (4)	Enterococci	34
Table (5)	Origin of common potential bacterial	J -T
Table (3)	pathogens	82
	pathogens	02
Tables of I	Patients and Methods:	
•	PCR amplification of <i>vanA</i> and <i>vanB</i>	
Table (1)	-	100
	genes	100
Tables of I	Results:	
Table (1)	Demographic data of all studied cases	106
Table (2)	Vancomycin susceptibility result among	
. ,	the studied cases	109
Table (3)	Comparison between VSE and VRE as	
(-)	regards the diagnosis of the patients	110
Table (4)	Comparison between VSE and VRE as	110
14610 (1)	regards enterococcal species colonizing	
	the GIT	112
Table (5)	Comparison between VSE and VRE as	112
Tuble (c)	regards immunosuppressive therapy	114
Table (6)	Comparison between VSE and VRE as	111
Table (0)	regards length of hospital stay	115
Table (7)	Comparison between VSE and VRE as	113
Table (1)	regards previous hospitalization, ICU	
	admission and previous surgical	
	interventions	116
Table (9)		110
Table (8)	Comparison between VSE and VRE as	
	regards neutropenia and febrile	117
	neutropenia	117

Table (9)	Comparison between VSE and VRE	
	regarding current and previous	
	antimicrobial intake	118
Table (10)	Comparison between VRE and VSE	
	regarding survival rate	120
Table (11)	Relation between different factors and	
, ,	VRE colonization among the studied	
	cases by using logistic regression analysis	121
Table (12)	Distribution of MIC and vancomycin	
, ,	resistant genes among VRE isolates	122
Table (13)	Antibiotic sensitivity test results for VRE	
,	isolates	123
Table (14)	Distribution of MIC of vancomycin and	
()	vanc genes among the isolated VRE	
	species	124

List of Figures

Number	Title	Page
Figures of	Review of Literature	
Figure (1)	Peptidoglycan structure in vancomycin	
G . ,	resistance and vancomycin sensitive	
	enterococci.	36
Figure (2)	Schematic diagram of the mechanism of	
	resistance to Vancomycin	36
Figure (3)	Schematic map of transposon Tn1546	
	from E. faecium that codes for	20
F' (4)	vancomycin resistance.	38
Figure (4)	Comparison of arrangements of the <i>vanA</i>	20
Figure (5)	and <i>vanB</i> glycopeptide resistance operons. Illustration of mode of transfer of VRE	39
Figure (5)	via a health care worker	52
Figure (6)	Measures aimed at interrupting the vicious	32
rigure (0)	circle leading to resistance	62
Figure (7)	Relationship of host-defence defects and	02
rigure (7)	infection	78
		, 0
Figures of	Patients and Methods	
Figure (1)	Enterococcal growth on bile aesculin agar	95
Figure (2)	PYR test	96
Figure (3)	Vancomycin agar screening method	98
Figure (4)	Agarose gel electrophoresis of vanA and	
	vanB by PCR assay	103
Figures of	· Posults	
Figure (1)	Demographic data of studied cases	107
Figure (2)	Diagnosis of the studied cases	108
Figure (3)	Antimicrobial intake among studied cases	108
Figure (4)	Vancomycin susceptibility result among	100
g (-)	the isolated enterococci	109
Figure (5)	Comparison between VSE and VRE as	
<i>5</i> 、 /	regards the diagnosis of the patients	111
Figure (6)	Comparison between VSE and VRE as	
J	regards enterococcal species colonizing	
	the GIT	113

Figure (7)	Comparison between VSE and VRE as	
	regards length of hospital stay	115
Figure (8)	Comparison between VSE and VRE	
	regarding current antimicrobial intake	119
Figure (9)	Comparison between VSE and VRE	
	regarding previous antimicrobial intake	119
Figure (10)	Distribution of <i>van</i> genes among VRE	
	isolates	124

AIM OF THE STUDY

The aim of this study was to determine:

- 1- The occurrence of colonization and bacteremia with vancomycin resistant enterococci (VRE) among hematology-oncology patients at Ain Shams University Hospitals.
- 2- The different risk factors associated with VRE colonization or infection.
- 3- The enterococcal species of all isolates.
- 4- The antimicrobial susceptibility pattern of the isolated VRE strains.
- 5- The Molecular characterization of *vanA* and *vanB* genes in these isolates.

INTRODUCTION

Enterococcus species are part of the normal gastrointestinal flora, together with close to 100 other species of aerobic and anaerobic bacteria. Initially, the enterococci were considered to be only slightly virulent, however the rapid emergence and dissemination of vancomycin resistant enterococcus strains (VRE) has completely changed the clinical relevance of these pathogens (Caiaffa et al., 2003). Enterococci have increasingly become responsible for serious clinical and nosocomial infections, including bacteremia, endocarditis, and urinary tract infections (Appleman et al., 2004).

Enterococcus sepsis can have overall mortality of 30% or higher with significantly higher mortality in burn patients and other immunocompromised patients. The appearance of resistance to vancomycin has made the therapy for enterococcal bacteremia much more difficult (*Sherwood et al.*, 1998).

There is concern that resistance genes in VRE might be transferred to other Gram-positive microorganisms, making the situation even worse. In addition, VRE has caused outbreaks and became endemic in several hospitals, presenting a challenge for hospital infection control teams (Cetinkaya et al., 2000).

Vancomycin resistance in enterococci has coincided with the increasing incidence of high-level enterococcal resistance to penicillin and aminoglycosides, thus presenting a challenge for physicians who treat patients who have infections caused by these microorganisms. Treatment options are often limited to combining antimicrobials or experimental compounds that have unproven efficacy (*Handwerger et al.*, 1993).

The epidemiology of VRE has not been clarified; however, certain patient populations are at increased risk for VRE infection or colonization. These populations include critically ill patients or those with severe underlying disease or immunosuppression (e.g., patients in ICUs or in oncology or transplant wards); persons who have had an intraabdominal or cardio-thoracic surgical procedure or an indwelling urinary or central venous catheter; and persons who have had a prolonged hospital stay or received multiantimicrobial and/or vancomycin therapy (*Husni et al., 2002*).

Because enterococci are part of the normal flora of the gastrointestinal and female genital tracts, most infections with these microorganisms have been attributed to the patient's endogenous flora (*Vergis et al., 2001*). However, recent studies have indicated that VRE and other enterococci can be transmitted directly by patient-to-patient contact or indirectly by transient carriage on the hands of