

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

COMPARATIVE STUDY OF INTENSITY-MODULATED RADIATION THERAPY VERIFICATION USING TWO-DIMENSIONAL IONIZATION CHAMBER ARRAY AND I'MRT VERIFICATION PHANTOM

Presented by

Sabbah Ibrahiem Abd-Rabbo Hammoury B.Sc.Biophysics AL-Azhar University-2005

For the Degree

Of

Master

In

Medical Biophysics

Examiner's committee

Prof. Dr. Tarek Mohammed Othman Elnemr Professor of Radio-Biological Physics Physics department Faculty of Science Tanta University

Prof. Dr. Metwally Aly Metwally Kotb Professor of Medical Biophysics Medical Biophysics Department Medical Research Institute Alexandria University

Prof. Dr. Mohammed Kamal Eldin Ahmed Professor of Medical Biophysics Medical Biophysics Department Medical Research Institute Alexandria University

Prof. Dr. Soheir Mahmoud El-Kholy Prof. and Head of Medical Biophysics Dept. Medical Research Institute Alexandria University Supervisors committee: Approved

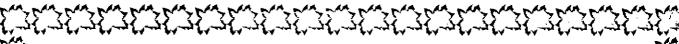
M. Kama

A. Kolb

sohein EL Kholy

Supervisors committee:

Prof. Dr. Metwally Aly Metwally Kotb Professor of Medical Biophysics Medical Biophysics Department Medical Research Institute Alexandria University M. Koth


Prof. Dr. Soheir Mahmoud El-Kholy Prof. and Head of Medical Biophysics Dept. Medical Research Institute Alexandria University soheir EL Kholy

Yaser E/Ken

Prof. Dr. Yasser Moustafa Elkerm Assis. Prof. of Clinical Oncology Cancer Management and Research Department Medical Research Institute Alexandria University

Prof. Dr. Yasser Asaad Mohamed Rashed Assis. Prof. of Medical Physics Clinical Oncology and Nuclear Medicine Dept. Faculty of Medicine Menofyia University

y åsert bor d

Acknowledgment

Before all, thank GOD,

Who gave me the strength and patience to fulfill this work,

I would like to express my thanks to **Prof. Or. Assem Rostom**, consultant clinical oncologist, the general and medical manager of Alexandria Ayadi Almostakbal Oncology Centre (AAAOC) for establishing the AAAOC for helping cancer patients for free, , as well as for his encouragement.

I would like to express my deepest gratitude and appreciation to **Prof. Dr. Metwally Aly Metwally Kotb**, Prof. of Bio-Medical Physics, Bio-Medical Physics Department, Medical Research Institute, Alexandria University, for his precious advice, constructive guidance, willing assistance, kindness, valuable support and encouragement.

I would like to express my supreme gratitude to **Prof. Or. Soheir Mahmoud El-Kholy**, Prof. and Head of Bio-Medical Physics Department, Medical Research Institute, Alexandria University for her valuable guidance throughout this work, as well as for her constant moral support and encouragement.

I express my thanks to **Prof. Or. Yasser Moustafa Elkerm**, Assis. Prof. of Clinical Oncology, Cancer Management and Research Department, Medical Research Institute, Alexandria University for his encouragement and valuable guidance throughout this work.

Really words can not describe how indebted and grateful I for **Prof. Dr. Yasser Asaad Mohamed Rashed**, Assis. Prof. of Medical Physics, Clinical Oncology and Nuclear Medicine Dept., Faculty of Medicine, Menofyia Universit, for suggesting this point of research and kindly supplied me with all necessaries for its success. His planning, meticulous supervision of every item in this work and invaluable discussions together with objective criticism are gratefully appreciated.

Finally, I would like to express my deepest gratitude to my family who supported and saw me through this work,

Sabbah Ibrahiem

Contents

		Page
Acknowledgment		i
Table of Contents		iii
List of Abbreviations	3	Vi
List of Tables		Viii
List of Figures		ii
CHAPTER 1:	Introduction	1
CHAPTER 2:	Aim of the Work	5
CHAPTER 3: Back	ground and theoretical considerations	6
3.1	Background	6
3.1.1	Birkhoff's Drawing Theory	7
3.1.2	Gravity Blocking	8
3.1.3	Tracking 60 Cobalt Unit	8
3.1.4	Blocks, Wedges, and Compensators	8
3.1.5	Modern IMRT History	8
3.1.5.1	What Exactly is IMRT?	8
3.1.5.2	Anders Brahme's Pioneering Contribution	10
3.1.5.3	Early Inverse Planning	12
3.1.5.4	Simulated Annealing	13
3.1.5.5	Cone-Beam IMRT	13
3.1.5.6	NOMOS, the MIMiC®, PEACOCKPLAN®	13
3.1.5.7	Tomotherapy	16
3.1.5.8	Multiple-Static-Field (MSF) MLC Technique	17
3.1.5.9	The Dynamic MLC (DMLC) IMRT Technique	18
3.1.5.10	Moving Jaw Therapy	20
3.2	Theoretical Considerations	21
3.2.1	Intensity Modulated Radiation Therapy Physics and	21
	Quality Assurance	
3.2.2	Features and Benefits of Intensity-Modulated	21
2.2.2.1	Radiation Therapy	21
3.2.2.1	Dose Conformality	21
3.2.2.2	Normal Organ Sparing	21
3.2.3	Multiple Simultaneous Treatments	24
3.2.4	Medical Necessity of Intensity-Modulated Radiation Therapy	24
3.2.5	Limitations and Risks of Intensity-Modulated	24

	Radiation Therapy		
3.2.5.1	Defining Clinical Target Volume	25	
3.2.5.2	Uncertainties in Dose-Response Data		
3.2.5.3	Defining Adequate Planning Target Volume	25	
3.2.6	Uncertainties in Plan Optimization, Dose	26	
	Calculation, Plan Evaluation, and Treatment		
	Delivery		
3.2.7	Intensity-Modulated Radiation Therapy	26	
	Terminology		
3.2.8	Intensity-Modulated Radiation Therapy Process	3()	
3.2.8.1	Delineation of Target Volume and Critical	30	
	Structures	_	
3 2.8.2	Treatment Planning and Optimization	30	
3.2.8.3	Site-Specific Information and Class Solutions	3()	
3.2.8.4	Beam Configuration	33	
3,2,8.5	Planning Objectives	13	
3.2.8.6	Plan Evaluation	36	
3,2.8.7	Leaf Sequencing Generation	37	
3.2.8.8	Connectivity Issues	38	
3.2.9	Quality Assurance for Intensity-Modulated	30	
	Radiation Therapy		
3.2.9.1	The Importance of Intensity-Modulated Radiation	30	
	Therapy Quality Assurance		
3.2.9.2	Intensity-Modulated Radiation Therapy Dosimetry	39	
2002	and Measurement Equipment		
3.2.9.3	Overview of Quality Assurance Process	44	
3.2.9.4	Patient-Specific Quality Assurance	46	
3.2.9.5	Equipment Quality Assurance	48	
3.2.9.6	Tolerances and Action Levels	49	
3.2.10	Guidelines for Starting an Intensity-Modulated	51	
2.2.10.1	Radiation Therapy Program	٠.	
3.2.10.1	Intensity-Modulated Radiation Therapy Benefits	51	
3.2.10.2	Intensity-Modulated Radiation Therapy Program	52	
2 2 10 2	Preparation	53	
3.2.10.3	Equipment Selection	52	
3.2.10.4	Implementation Steps	53	
3.2.11	Multileaf Collimator as Intensity Modulator	54	
3.2.12	Commissioning of Intensity-Modulated Radiation	56	
20101	Therapy Mechanical Testing of Dynamic Multileaf	57	
3.2.12.1	Mechanical Testing of Dynamic Multileaf Collimator	.3 /	

3.2.12.1.1	Stability of Leaf Speed	57
3.2.12.1.2	Dose Profile across Adjacent Leaves	57
3,2,12,1,3	Leaf Acceleration and Deceleration	59
3.2.12.1.4	Positional Accuracy of Leaves	59
3.2.12.1.5	Routine Mechanical Check	60
3.2.12.2	Dosimetric Checks	62
3.2.12.2.1	Multileaf Collimator Transmission	62
3.2.12.2.2	Head Scatter	63
3.2.12.2.3	Treatment Verification	65
CHAPTER 4:	Materials and Methods	67
4.1 Materials		67
4.1.1	Medical Linear Accelerator (Siemens PRIMUS)	67
4.1.2	Computed Tomography	67
4.1.3	Absolute Dosimetry System	69
4.1.3.1	PTW-UNIDOS	69
4.1.3.2	Farmer-Type Ionization Chamber (0.6 cc)	70
4.1.3.3	PinPoint Ionization Chamber (0.015 cc)	71
4.1.3.4	Radioactive Check Device	72
4.1.3.5	RW3 Slab Phantom	73
4.1.3.6	Water Phantom 41023 for Horizontal Beams	74
4.1.3.7	ESTRO Mini-Phantom	75
4.1.4	Relative Dosimetry System	75
4.1.4.1	PTW 0.125 cc Ionization Chamber Type 31002	75
4,1.4.2	Software MEPHYSTO Program	76
4.1.5	2D-ARRAY seven29 with 729 Ion Chambers	77
4.1.6	I'mRT Phantom	78
4.1.7	VIDAR's DosimetryPRO	79
4.2 The Method	ls	80
4.2.1	The Protocol of Absolute Dose Calculation	80
4.2.2	IMRT Procedures	81
4.2.3	Who will be involved in this procedure?	81
4.2.4	Characteristics of 2D array measurement Method	81
4.2.5	Absolute dose verification Method	82
4.2.6	Dose distribution verification Method	83
4.2.7	Gamma index calculation Method	83
CHAPTER 5:	Results and Discussion	84
	zation of a 2D ion chamber array for the	84
	n of radiotherapy treatments	

5.1.1	Reproducibility	84	
5.1.2	Linearity	86	
5.1.3	Output factors	87	
5.1.4	Comparison of beam profiles using different detectors	88	
5.2	Clinical Verification of IMRT Treatments	97	
5.3	Clinical Verification of IMRT Treatment planning	106	
5.3.1	Quality Assurance of Delivered Absolute Dose	106	
5.3.2	Quality Assurance of Dose Distribution		
5.3.3	Gamma Index Analysis		
5.3.4	Comparison between the 2D array and film	116	
<u>CHAPTER</u>	6: Conclusion	118	
<u>CHAPTER</u>	7: References	122	
<u>CHAPTER</u>	8: Arabic Abstract		