Serum BLC/CXCL13 Concentrations in Children with Systemic Lupus Erythematosus

Thesis

Submitted in the partial fulfillment of requirements of Master degree in Pediatrics

By

Essam Shehata Mohamed Shokr

M.B., B.Ch.- Alazhar University, (2002)

Under the Supervision Of

Dr. Mohamed Hesham Mohamed Ezzat Abd El-Hameed

Professor of Pediatrics
Faculty of Medicine - Ain Shams University

Dr. Tarek Mohey Abdelmegeed EL-Gammasy

Assistant Professor of Pediatrics
Faculty of Medicine - Ain Shams University

Dr. Kareem Yehia Aly Shaheen

Professor of Clinical Pathology
Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2010

مستوى (BLC/CXCL13) في مصل الأطفال المصابين بمرض الذئبة الحمراء

رسالة توطئة للحصول على درجة الماجستير في طب الأطفال

مقدمة مـن

الطبيب /عصام شحاتة محمد شكر بكالوريوس الطب والجراحة العامة - جامعة الأزهر, 2002

تحت إشراف

الدكتور / محمد هشام محمد عزت عبد الحميد أستاذ طب الأطفال كلية الطب ـ جامعة عين شمس

الدكتور/ طارق محيى عبد المجيد الجمسى أستاذ مساعد طب الأطفال كلية الطب ـ جامعة عين شمس

> الدكتور / كريم يحيى على شاهين أستاذ الباثولوجيا الإكلينيكية كلية الطب ـ جامعة عين شمس

> > كلية الطب جامعة عين شمس 2010

Acknowledgment الحمد الله ربم العالمين

At first and foremost thanks to "Allah" who gave me the power to finish this work.

I find no words by which I can express my deepest thanks and gratitude to my honored professor, Dr. Mohamed Hesham Mohamed Ezzat Abd El-Hameed, Professor of Pediatrics, and Professor of Pediatric Allergy and Immunology, Faculty of Medicine, Ain Shams University, for the continuous kind encouragement, support and guidance, he gave me throughout the entire work. It has been an honor and privilege to work under his generous supervision.

The sincere help and enormous effort of Dr. Kareem Yehia Aly Shaheen, Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, is truly acknowledged. He gave me a lot of his valuable time to achieve the laboratory part of this work.

I would like to express my endless gratitude and appreciation to Dr. Tarek Mohey Abdelmegeed EL-Gammasy, Assistant Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for giving me the opportunity to work under his meticulous supervision. His honest assistance and patience make me truly indebted to him.

To my parents, colleagues and to every one who participated in a way or another in this work, I owe my thanks and appreciation.

A great deal of my gratitude goes to my patients and their parents for their kind cooperation and patience wishing them a very rapid and complete permanent recovery.

Essam Shehata Mohamed Shokr

CONTENTS

	Page
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction and Aim of the work	1
Review of literature	5
Systemic Lupus Erythematosus Chemokines	5 32
Subjects and methods	68
Results	80
Discussion	91
Conclusions	100
Recommendations	101
Summary	103
References	107
Arabic summary	

LIST OF ABBREVIATIONS

ACR: American College of Rheumatology

act: Activated T cell
actTH2: Activated TH2 cell
ANAs: Antinuclear antibodies
Anti-dsDNA: Anti-double stranded-DNA
APS: Antiphospholipid syndrome

B: B-cells BAS: Basophil

b-FGF:
Basic fibroblast growth factor
BLC:
B-lymphocyte chemoattractant
BMMC:
Bone marrow-derived mast cells

C: Cysteine

CINC: Cytokine-induced neutrophil chemoattractant CLA Cutaneous lymphocyte-associated antigen

CNS: Central nervous system cSLE: Childhood-onset SLE CVD: Cardiovascular disease CYC: Cyclophosphamide

DC: Dendritic cells EC: Endothelial cells

EDTA: Ethylene-diamine-tetra-acetate

ELISA: Enzyme linked immunosorbant assay

ELR: Glutamate / Leucine / Arginine

ENA78: Epithelial derived neutrophil attractant

Eos: Eosinophils EP: Epithelial cells

ESR: Erythrocyte sedimentation rate

ESRD: End-stage renal disease

F: Fibroblast

GBM: Glomerular basement membrane GCP: Granulocyte chemotactic protein

GM-CSF: Granulocyte-Macrophages-colony stimulating

factor

GN: Glomerulonephritis

GRO: Growth-related oncogene

ICAM: Intercellular adhesion molecule

ICs: Immune complexes

IDECs: Inflammatory dendritic epidermal cells

IFN-γ: Interferon-γ

Igs: Immunoglobulins

IL: Interleukin

ILD: Interstitial lung disease immDC: Immature dendritic cell

IP-10: Interferon-gamma-inducible protein-10

IQR: Interquartile range

I-TAC: Interferon-inducible T-cell alpha chemoattractant

K: KeratinocytesKD: kilo DaltonL: Lymphocytes

LARC: Liver and activation-regulated cytokine

M Monocytes/Macrophages
MAb: Monoclonal antibodies
matDC Mature dendritic cell

MCP: Monocyte chemoattractant protein M-CSF: Macrophage colony-stimulating factor

MDC: Macrophage-derived chemokine MIP: Macrophage inflammatory protein

MMF: Mycophenolate mofetil MMPs: Matrix metalloproteinases

N: Neutrophils

NAP: Neutrophil activating peptide

NP: Neuropsychiatric PF4: Platelet factor-4

PLT: Platelets

PMN: Polymorphonuclear leukocytes

rstT: Resting T cell RTX: Rituximab

SDF-1: Stromal-derived factor

SLE: Systemic lupus erythematosus

SLEDAI: Systemic lupus erythematosus disease activity index

T: T-cells

TARC: Thymus and activation-regulated cytokine

TECK: Thymus-expressed chemokine TGF: Transforming growth factor

TIMP: Tissue inhibitors of matrix metalloproteinases

TNF: Tumor necrosis factor

LIST OF TABLES

Subject	
Table(1): World Health Organization (WHO) Pathologic	13
Classification of Lupus Nephritis	
Table(2): Proinflammatory chemokines and their cell sources	35
Table(3): Developmental and homeostatic chemokines and their cell sources	36
Table(4): Proinflammatory chemokine receptor	40
Table(5): Developmental and homeostatic chemokine receptors	41
Table(6): Cytokines and chemokines in allergy and asthma	56
Table(7):The Boston Weighted Criteria for theClassification of Systemic Lupus Erythematosus	70
Table(8): Systemic Lupus Erythematosus Disease Activity Index (SLEDAI)	73

LIST OF FIGURES

Subject	
Figure(1): Chemokine receptor expression by hematopoietic cells	
Figure(2): Pleiotropic function of chemokines	52
Figure(3): Chemokine- induced migration of eosinophils in lung	
Figure(4): Role of chemokines in inflammatory diseases	
Figure(5): Box-plot summary of serum CXCL13/BLC/BCA-1 expression in systemic lupus erythematosus and control subjects	81
Figure(6): Box-plot summary of serum CXCL13/BLC/BCA-1 expression in systemic lupus erythematosus according to the presence of nephritis	82
Figure(7): Box-plot summary of serum CXCL13/BLC/BCA-1 expression in systemic lupus erythematosus according to lupus flare	83
Figure(8): Significant positive correlation between serum CXCL13 levels and 24 hours urinary protein excretion in systemic lupus erythematosus during disease activity	85
Figure(9): Significant negative correlation between serum CXCL13 levels and creatinine clearance in systemic lupus erythematosus during disease activity	86
Figure(10): Significant negative correlation between serum CXCL13 levels and serum complement-3 in systemic lupus erythematosus during disease activity	87
Figure(11): Significant positive correlation between serum CXCL13 levels and serum anti-ds-DNA antibodies in systemic lupus erythematosus during disease activity	88

INTRODUCTION

Systemic lupus erythematosus (SLE) is an organ non-specific autoimmune disorder, with multiple immunopathogenic mechanisms being implicated in its development. The most conspicuous feature of the disease is an exaggerated synthesis of various types of autoantibodies, followed by the formation of immune complexes that deposit in tissues and elicit an inflammatory response. Apart from antibodies, dendritic cells, T cells and cytokines are substantially involved in the pathogenesis of SLE and class I interferons seem to play a crucial role. SLE is a genetically determined disease. HLA system and complement system genes, apoptosis regulating genes and IgG Fc-gamma receptor genes are among the multiple genes implicated in SLE. The role of hormones, both estrogen and progesterone and androgens, in SLE activity has been reported (*Buc and Rovensky*, 2009).

Cytokines, chemokines, and growth factors are over expressed by renal parenchymal cells and by infiltrating mononuclear cells in human and experimental lupus nephritis. The importance of cytokines in the pathogenesis of lupus nephritis has been established using spontaneous mouse models of SLE. The actions of these cytokines are complex. There is a growing appreciation that the cytokine level and stage of kidney disease determines whether cytokine protects or promotes further tissue injury (*Rovin*, 2008).

B-Lymphocyte Chemoattractant (BLC), also known as B Cell-Attracting chemokine 1 (BCA-1), or CXCL13, is a member of the CXC subtype of the chemokine superfamily. BLC is critical for secondary lymphoid tissue development and navigation of lymphocytes within the microcompartments of these tissues. The gene encodes a putative protein of 109 amino acids (aa), including a 21 aa leader peptide. At the aa level, human BLC exhibits 64% similarity to its mouse counterpart, and the gene has been mapped to chromosome segment 4q21 (*Picchio et al.*, 2008).

Within the human BLC protein sequence, an arginine residue separates the first two of four conserved cysteine residues that are characteristic of CXC chemokines. BLC is a pertussis toxin-sensitive chemoattractant for B cells in vitro. It is constitutively expressed in the B cell follicles of secondary lymphoid organs, and expression of BLC in these structures is dependent upon the activity of lymphotoxin α/β . (*Ishikawa et al., 2002*).

BLC is also expressed in the pleural and peritoneal cavities, and in ectopic lymphoid follicles found within the synovium of patients with rheumatoid arthritis. The primary BLC receptor is the 7-transmembrane G-protein coupled receptor, CXCR5, also known as Burkitt's lymphoma receptor 1 (BLR-1). Cells that express CXCR5 and respond to BLC include B cells, follicular B helper T (TFH) cells, osteoblasts, podocytes and a subset of skin-derived dendritic cells. In CXCR5-transfected HEK

cells, BLC can stimulate elevations of Ca2+ and pertussis toxin-sensitive activation of MAP kinase signaling cascades. CXCR3, a known receptor for IFN-γ-inducible protein (IP-10), monokine induced by IFN-γ (MIG), and interferon-inducible T cell alpha chemoattractant (I-TAC), is also activated in vitro by BLC (*Picchio et al., 2008*).

and CXCR5-/knockout CXCL13-/mice exhibit similar abnormalities including deficiencies in the development of most peripheral lymphoid organs. Both knockouts have decreased numbers of peripheral lymph nodes and Peyer's patches, and a disruption of polarized B and T cell microcompartments in spleen and Peyer's patches. Furthermore, CXCR5-/-B cell entry into Peyer's patches (homing) is impaired. BLC likely plays a complex role in antigen-induced movement of B cells within secondary lymphoid tissues. After antigen binding, B cells move from the follicle to the boundary of the T cell zone where they interact with helper T cells. Movement of B cells to the boundary of B and T cell zones is dependent upon the activity of CCR7, a receptor for the T cell zone chemokines MIP-3 /CCL19 and 6Ckine/CCL21. B cell translocation to the B/T cell boundary is inhibited by over-expression of CXCR5. B1 cells, in contrast to conventional circulating B cells (B2 cells), home to the peritoneal and pleural cavities. This activity is inhibited in CXCL13-/- mice and is accompanied by a marked reduction in antibody responses to peritoneal antigens. TFH cells, a CD4+ peripheral blood and tonsillar memory T cell subset, also express CXCR5

and migrate in response to BLC. Tonsillar TFH cells cultured with tonsillar B cells stimulates IgG and IgA antibody production. In vivo, BLC co-localizes with TFH cells in B cell zones of secondary lymphoid tissues suggesting a potential role in the regulation of humoral immunity (*Ishikawa and Matsushima*, 2007).

A total of 15–20% of cases of SLE are diagnosed in children younger than 16 years (childhood-onset lupus). Although there have been few studies directly comparing childhood- to adult-onset lupus, there is substantial evidence to suggest that pediatric lupus patients display some differences in their disease profile compared with adult-onset populations. A higher prevalence of nephritis and a higher prevalence of progression to end-stage renal disease are distinguishing features of childhood-onset lupus (*Tucker et al.*, 2008).

Aim Of The Work

The aim of this study was to determine the expression of B-Lymphocyte Chemoattractant (BLC), also known as B Cell-Attracting chemokine 1 (BCA-1), or CXCL13 in the serum of SLE children. The results were compared with those obtained from a group of healthy age-and sex-matched children serving as controls, to clarify the clinical usefulness of such biomarker and its relevance to clinical and laboratory variables in terms of SLE disease severity, activity and response to therapy. This chemokine could hopefully be a reasonable target for therapeutic potentials of SLE.

SYSTEMIC LUPUS ERYTHEMATOSUS

Systemic lupus erythematosus (SLE) is an autoimmune rheumatic disease that results from the interaction of multiple environmental, immunological and genetic factors, causing inflammation and eventually damage in a wide range of organs and systems. Its prevalence ranges from approximately 40 cases per 100,000 individuals in Caucasians to more than 200 cases per 100,000 individuals among black people (*Johnson et al.*, 2005). In common with other autoimmune diseases, it is more prevalent among women, by a factor of 9 (*Abu-Shakra et al.*, 1995).

Although mainly a disease of women of childbearing age, its prevalence is not confined within this population. A total of 15-20% of cases present in children less than 16 years of age. Although there have been limited studies directly comparing adult- and childhood-onset SLE (cSLE), it has been suggested that pediatric lupus patients have a more aggressive disease course and an increased rate of more unusual initial clinical presentations compared with their adult counterparts (*Tucker et al.*, 2008).

A total of 67 childhood-onset and 131 adult-onset SLE patients were followed-up prospectively for 9 years for disease activity and damage. Children with childhood-onset SLE had more active disease at presentation and over time, especially active renal disease, culminating in overall greater damage and a higher need for steroids and immunosuppressive drugs (*Brunner et al.*, 2008).

Differences in the serological and autoantibody profiles of children and adults with SLE have also been described. Lupus may be life-threatening when major organs are affected; however, in the majority of cases, it results in chronic debilitating ill health. Thus, the impact of the disease on growth and development, and its effects on the psychosocial adjustment of children, are important issues that need to be addressed by healthcare providers (*Hersh et al.*, 2009).

Epidemiological Features of SLE

One of the main difficulties in comparing data from published studies on cSLE is the lack of agreement about the definition of a 'child', with the cut off for inclusion as a 'childhood-onset case' varying between 14 and 20 years of age. As disease expression in SLE is influenced by environmental factors and differs between racial and ethnic groups, when attempting comparisons, it is also important to use cohorts of adults and children with SLE from similar backgrounds. Furthermore, juvenile SLE patients are invariably referred to adult clinics and thus are treated by different physicians when their age exceeds a certain limit, which might render their long-term enrollment to studies problematic or alternatively confound the studies they participate in. Despite these limitations, some conclusions regarding epidemiological differences between adult- and childhood-onset disease can safely be drawn (*Carreno et al.*, 1999).

As already mentioned, in around 15% of individuals with SLE, the disease begins prior to 16 years of age. The diagnosis of lupus is uncommon before 10 years of age (*Jimenez et al.*, 2003). The median age of diagnosis of SLE in children is 12.1 years, with the female to male ratio ranging from 2.3:1 to 9:1 (*Benseler and Silverman*, 2005). In

another series, the female to male ratio in children presenting with lupus before the age of 12 is 3-5:1, whereas this ratio for lupus presenting in the peri- or postpubertal age is approximately 5-7:1, approximately the same ratio as is seen in adults (*Miettunen et al.*, 2004).

The incidence and severity of childhood-onset SLE varies among different ethnic groups. In Caucasians, the incidence of lupus onset prior to 19 years of age is between 6 and 18.9 cases per 100,000 individuals, whereas in pediatric populations of African-American ancestry, it reaches 30 cases per 100,000 individuals, emphasizing the striking impact of race on the incidence of lupus (up to a threefold increase in the prevalence of disease is observed in non-Caucasians), comparable to adult-onset disease (*Jimenez et al.*, 2003).

Younger age, male sex, non-Caucasian race, low socioeconomic status, nephritis and CNS disease are considered to be risk factors for severe lupus; however, their association with a poorer prognosis in childhood- or adult-onset disease remains controversial (*Bogdanovitc et al.*, 2004 and Mok, 2005).

Clinical Manifestations

General Features:

Comparing the clinical features of childhood- and adult-onset disease reveals similarities as well as important differences. In general, children with lupus tend to have more severe and more aggressive disease than adult SLE patients, and childhood-onset SLE often presents with major organ system involvement, including renal and neuropsychiatric (NP) disease (*Klein-Gitelman et al.*, 2002).