

Preparation and Characterization of Ceramic Bodies based on Some Phosphate containing Wastes

Thesis Submitted
By
Nihal Ahmed Mohamed Tawfik El-Mahalawy
(M. Sc. in Chemistry)

For Fulfillment of the Degree of Ph. D. in Chemistry

Chemistry Department Faculty of Science Ain Shams University

Cairo, Egypt

2015

Preparation and Characterization of Ceramic Bodies based on Some Phosphate containing Wastes Thesis Submitted by

Nihal Ahmed Mohamed Tawfik El-Mahalawy

(M. Sc. in Chemistry)

For Fulfillment of the Degree of Ph. D.

in Chemistry

Supervised by

Prof. Maged Shafik Antonious

Professor of Inorganic Chemistry, Department of Chemistry, Faculty of Science, Ain Shams University.

Prof. Mohamed Awaad

Professor of Chemistry and Technology of ceramics, Department of Refractories, ceramics and Building Materials, National Research Centre.

Prof. Salma Naga

Professor of Chemistry and Technology of ceramics, Department of Refractories, ceramics and Building Materials, National Research Centre.

2015 Approval Sheet Ph. D. Thesis

Entitled

Preparation and Characterization of Ceramic Bodies based on Some Phosphate containing Wastes

Thesis Submitted by

Nihal Ahmed Mohamed Tawfik El-Mahalawy

Thesis Advisors

Approved

Prof. Maged Shafik Antonious

Professor of Inorganic Chemistry, Department of Chemistry, Faculty of Science, Ain Shams University.

Prof. Mohamed Awaad

Professor of Chemistry and Technology of Ceramics, Department of Refractories, ceramics and Building Materials, National Research Centre.

Prof. Salma Naga

Professor of Chemistry and Technology of Ceramics, Department of Refractories, ceramics and Building Materials, National Research Centre.

Head of Chemistry Department

Prof. Dr. Hamad Ahmed Younes Derbala

Acknowledgement Thanks to ALLAH

No words can ever express my sincere gratitude for all the people who contributed to the fulfillment of this work, my Supervisors and friendly colleagues at National Research Centre, Department of Refractories, Ceramics and Building Materials.

I would like to express my deep gratitude to **Prof. M. Sh.**Antonious, Professor of inorganic Chemistry, Faculty of Science,

Ain Shams University for his kind supervision, continuous

encouragement, valuable advice and tremendous help throughout
this work.

With sincere respect and gratitude, I would like to thank **Prof. S. M. Naga**, professor of Chemistry and Technology of Ceramics, National Research Centre, for suggesting and valuable planning the points and scheme of the present work, for sound supervision, kind help, valuable advices, critical reading of the manuscript, encouragement during carrying out this work, The guidance and support especially during the latest phase of the present work.

I wish to express my deep appreciation to **Prof. M. A.**Awaad, Professor of Chemistry and Technology of Ceramics,

National Research Centre, for his fatherly guidance, supervision,

valuable discussion, great criticism, constructive criticism,

correcting the manuscript and continued help during the course of
this work.

I express my gratitude and deep appreciation to my whole family, husband and my son for their encouragement that were of great support to me.

CONTENTS

		Page
	LIST OF FIGURES	1
	LIST OF TABLES	VI
	ABSTRACT	VIII
	CHAPTER I	
1.	Introduction	1
	CHAPTER II	
II.	Literature Survey	4
II.1.	Reuse of waste materials in ceramic	4
	production.	
II.1.1.	Fish bone wastes.	6
II.1.2.	Extraction of hydroxyapatite from fish	7
	bone.	
II.2.	Ceramic materials.	10
II.2.1.	Bone china.	11
II.2.1. 1.	Definition of bone china.	11

II.2.1. 2.	Properties of bone china.	1
II.2.1. 3.	Composition of bone china.	1
II.2.1. 4.	Manufacturing process of bone china.	1
II.2.1.4.1.	Firing process.	1
II.2.1.4.2.	Bone china phase composition.	1
II.2.1.4.3.	Porosity of bone china.	1
II.2.1.4.4.	Translucency and whitening of bone china.	1
II.2.2.	Stoneware tiles.	1
II.2.2.1.	Definition of stoneware tiles.	1
II.2.2.2.	Properties of stoneware tiles.	1
II.2.2.3.	Manufacturing of stoneware tiles.	2
II.2.2.4.	Substitution with calcium ions as a flux in	2
	the production of stoneware tiles.	
II.2.2.5.	Using of waste materials in stoneware tile	2
	production.	
	CHAPTER III	
III.	Materials and Methods.	2
III.1.	Materials.	2
III.1.1.	El-Tieh kaolin.	2
III.1.2.	English China Clay (E.C.C.).	2
III.1.3.	Hafafit feldspar.	2
III.1.4.	The weathered Feldspar.	2

III.1.5.	Fish bone ash.	2
III.2.	Methods of Investigation.	2
III.2.1.	Preparation of the raw materials.	2
III.2.2.	Characterization of the starting	2
	materials.	
III.2.2.1.	Chemical composition.	2
III.2.2.2.	Mineralogical composition [X-ray	2
	diffraction analysis (XRD)].	
III.2.2.3.	Differential scanning calorimetry (DSC).	3
III.2.3.	Processing.	3
III.2.3.1.	Development of hydroxyapatite (HA)	3
	powder.	
III.2.3.2.	Batch design.	3
III.2.3.3.	Forming.	3
III.2.4.	Firing (Sintering).	3
III.2.5.	Characterization of the fired samples	3
III.2.5.1.	Physical properties.	3
III.2.5.2.	Phase constitution of the studied	3
	batches.	
III.2.5.2.1.	X-ray diffraction analysis (XRD).	3
III. 2.5.2.2.	Microstructure investigation by scanning	3
	electron microscope (SEM).	

III.2.5.2.3.	Linear thermal expansion.	35
III.2.5.2.4.	Mechanical properties.	36
III.2.5.2.5.	Whiteness Index measurements.	37
III.2.5.2.6.	Translucency measurement.	38
	CHAPTER IV	
IV.	Results and Discussion.	39
IV.1.	Characterization of the starting raw	39
	materials.	
IV.1.1.	El-Tieh kaolin	39
IV.1.1.1.	Phase composition analysis (XRD) of El-	39
	Tieh kaolin.	
IV.1.1.2.	Chemical composition of El-Tieh kaolin in	39
	mass-%.	
IV.1.1.3.	Thermal analysis (DSC) of El- Tieh kaolin.	41
IV.1.2.	English China Clay (E.C.C.)	41
IV.1.2.1.	Phase composition (XRD) analysis of E.C.C	41
IV.1.2.2.	Chemical composition of E.C.C. in mass-%	42
IV.1.2.3.	DSC_analysis of E.C.C.	42
IV.1.3.	Hafafit feldspar.	43
IV.1.3.1.	Phase composition (XRD analysis) of	43
	Hafafit feldspar.	

IV.1.3.2.	Chemical composition of Hafafit	44
	feldspar in mass-%.	
IV.1.3.3.	DSC analysis of Hafafit feldspar.	44
IV.1.4.	The weathered feldspar.	45
IV.1.4.1.	Phase composition (XRD analysis)	45
	of the weathered feldspar.	
IV.1.4.2.	Chemical composition of the	46
	weathered feldspar in mass-%.	
IV.1.4.3.	DSC analysis of the weathered	46
	feldspar.	
IV.1.5.	Fish bone ash.	47
IV.1.5.1.	Phase composition (XRD analysis)	47
	of fish bone ash.	
IV.1.5.2.	Chemical composition of the bone	48
	ash in mass-%.	
IV.1.5.3.	Thermal analysis (DSC) of the fish	48
	bone ash.	
IV.2.	Characterization of the ceramic	49
	products.	
IV.2.1.	Characterization of the first group	49
	ceramic tiles.	
IV.2.1.1.	Chemical composition of the first	49

	group batches.	
IV.2.1.2.	Physical properties of the first	50
	group samples fired at different	
	firing temperatures.	
IV.2.1.3.	Phase composition of the first group	51
	fired bodies (XRD).	
IV.2.1.4.	Microstructure of the first group	53
	(SEM).	
IV.2.1.5.	The coefficient of thermal expansion	55
	(CTE) of the first group.	
IV.2.1.6.	Mechanical behavior (Three point	56
	bending test) of the first group.	
IV.2.2.	Characterization of the second	57
	group ceramic tiles.	
IV.2.2.1.	Chemical composition of the second	57
	group batches.	
IV.2.2.2.	Physical properties of the second	58
	group samples fired at different	
	firing temperatures.	
IV.2.2.3.	Phase composition of the second	60
	group (XRD).	
IV.2.2.4.	Microstructure of the second group.	61

IV.2.2.5.	The coefficient of thermal expansion	66
	measurement (CTE) of the second	
	group.	
IV.2.2.6.	Mechanical behavior (Three point	67
	bending test) of the second group.	
IV.2.3.	Characterization of the third group	68
	(Bone china).	
IV.2.3.1.	Chemical composition of the third	68
	group bone china batches.	
IV.2.3.2.	Physical properties of the third	69
	group samples (bone china)fired	
	at different firing temperatures.	
IV.2.3.3.	Phase composition of the third group	71
	of fired bone china bodies (XRD).	
IV.2.3.4.	Microstructure of the third group of	72
	bone china samples (SEM).	
IV.2.3.5.	The coefficient of thermal expansion	76
	(CTE) of the third group (bone china).	
IV.2.3.6.	Mechanical behavior (Three point	77
	bending test) of the third group bone	
	china.	
IV.2.3.7.	Whiteness index measurement of	78

	the fired bone china bodies.	
IV.2.3.8.	Translucency measurement of the	80
	fired bone china bodies.	
	CHAPTER V	
V.	CONCLUSION	82
	REFERENCES	84
	DUDUCUED DADED	407
	PUBLISHED PAPER	107
	ARABIC SUMMARY	

LIST OF FIGURES

Fig.	LIST OF FIGURES	
No.		Page
Fig 1:	Green samples for (a) physical and	33
	microstructural characterization, (b)	
	thermal mechanical testing.	
Fig 2:	XRD patterns of El-Tieh kaolin raw	39
	material.	
Fig 3:	DSC curve of El-Teih kaolin raw	41
	material.	
Fig 4:	XRD patterns of the English China	42
	Clay (E.C.C).	
Fig 5:	The DSC patterns of the E.C.C.	43
Fig 6:	XRD patterns of Hafafit feldspar	44
	raw material.	
Fig 7:	DSC curve of Hafafit feldspar raw	45
	material.	
Fig 8:	XRD patterns of weathered feldspar	45
_	raw material.	
Fig 9:	The DSC pattern of the weathered	46
O	feldspar.	
Fig 10:	XRD patterns of hydroxyapatite	47
8	Partition of my drawn appearate	

	(HAP) at different calcination	
	temperatures.	
Fig 11:	DSC pattern of the fish bone ash.	48
Fig 12:	Physical properties of different	51
	tile batches (H_5 , H_{10} , H_{15} and H_{20})	
	fired at different firing	
	temperatures.	
Fig 13:	The ternary diagram CaO-Al ₂ O ₃ -	52
J	SiO ₂ in which the tile batches lie in	
	the field of anorthite, rankinite and	
	gehlenite.	
Fig 14:		
	ceramic tile bodies.	53
Fig 15:	SEM micrograph of tiles (batch H_{10}).	54
Fig 16:	SEM micrograph of tiles (batch H_{10}).	54
Fig 17:	SEM micrograph of batch "H ₂₀ "	55
	showing quartz crystal with fine	
	primary mullite grains.	
Fig 18:	Relation between the porosity of the	57
9	fired stoneware tiles and the bending	
	strength values for the different	
	batch compositions.	
Fig 19:	Physical properties of the second	60

	group fired batches fired at different	
	firing temperatures.	
Fig 20:	XRD analysis of the second group	61
	fired bodies.	
Fig 21:	The microstructure of W_{25}	62
	sample fired at 1200 °C showing a	
	body with relatively low open	
	porosity.	
Fig 22:	SEM micrograph showing	63
	tabular anorthite crystals found in	
	the pores in the W_{25} sample.	
Fig 23:	SEM micrograph showing tabular	63
	anorthite crystals found in the pores	
	in the W_{25} sample.	
Fig 24:	SEM micrograph showing	64
	quartz solution rim surrounding the	
	quartz grain in the sample W_{15} .	
Fig 25:	SEM micrograph showing the	64
	presence of both the primary mullite	
	(P) and the elongated secondary	
	mullite crystals (S) of sample W_0 .	
Fig 26:	SEM micrograph showing	65