

كلية العلوم نسم الكيمياء

Photochromism and Spectroscopic Studies of Some Spiropyran Complexes of Some Transition Metal Ions

A Thesis Submitted for the Degree of Master of Science as a Partial Fulfillment for Requirements of the Master of Science

Inorganic Chemistry

Sarah Nagy Ali Mobarez Fares

Thesis Advisors Prof. Dr. Mohamed Sabry Abdel-Mottaleb

Professor of Inorganic and photochemistry, Faculty of Science, Ain Shams University

Prof. Dr. Mohamed Mahmoud Abo-Aly

Professor of Inorganic and photochemistry, Faculty of Science, Ain Shams University

Dr. Mohamed Said Attia

Associate Professor of Inorganic and photochemistry, Faculty of Science, Ain Shams University

Department of Chemistry

Faculty of Science

Ain Shams University

Cairo, Egypt

2015

كلية العلوم قسم الكيمياء

Photochromism and Spectroscopic Studies of Some Spiropyran Complexes of Some Transition Metal Ions

A Thesis Submitted By Sarah Nagy Ali Mobarez Fares

(B. Sc. 2009)

For M. Sc. Degree in Inorganic Chemistry
Thesis Advisors
Thesis Approved

Prof. Dr. Mohamed Mahmoud Abo-AlyProfessor of Inorganic and photochemistry, Faculty of Science,

Ain Shams University.

Dr. Mohamed Said Attia

Associate Professor of Inorganic and photochemistry, Faculty of Science, Ain Shams University.

Head of Chemistry Department **Prof. Dr. Hamed Ahmed Derbala**

Professor of Organic Chemistry, Faculty of Science, Ain Shams University

2015

Acknowledgment

I wish to express my sincere gratitude to **Prof. Dr. M. S.**A. Abdel-Mottaleb, Professor of Inorganic Chemistry, Faculty of Science, Ain Shams University; he was kind enough for suggesting the lines of research and following up the progress of the work with keen interest, guidance and valuable criticism. He also offered his lab facilities to carry out the experimental work, for that I am greatly appreciated.

I would like to express my sincere gratitude and indebtedness to **Prof. Dr. M. M. Abo-Aly,** Professor of Inorganic Chemistry, Faculty of Science, Ain Shams University; for his kind help, encouragement, supervision and continuous advice.

Also, I thank **Prof. Dr. M. S. Attia**, Associate Professor of Inorganic Chemistry, Faculty of Science, Ain Shams University; he was not only active enough during the progress of the work but also was loyally cooperative.

Last but not least, my great and deep gratitude for my wonderful mother, my father, my sister Rana, my friends, my colleagues and for all people who help me to finish this work.

Sarah Nagy Ali Mobarez

LIST OF FIGURES

LIST OF FIGURES

Figure
1.1 The photochromic conversion loops of the SP dissolved in
different solvents
1.2 The structure of a spirooxazine
1.3 Complexation species in PMC of spiro
[indolinephenanthrolineoxazines]
1.4 Closed and open forms of spiropyrans
1.5 Quiniodal and zwitterionic forms of MC
1.6 Some intermediates of SP and MC interconversions
1.7 Photocolration and back reactions of a spiropyran
1.8 Photocolration and back reactions of some spiropyrans
1.9 Photocolration and back reactions of Porphyrin-spiropyran
metal complexes.
1.10 Structure of polyenic spirobenzopyrans
1.11 Photomerocyanines derived from the ring-opening of the
spironaphthopyran 12a
1.12 Photocoloration reaction of a spirooxazine
1.13 The ultraviolet irradiation and the back reaction of the
[1,3]oxazines
1.14 Photochromism of diarylethene 1
1.15 Photochromism of diarylethene 2
1.16 Photochromism of phenanthrene-bridged diarylethenes
1.17 Ring-Opening and Ring-Closing Photoisomerization of
a Diarylethene
1.18 Photochromism of 4(1 <i>H</i>)-quinolone
1.19 (a) Photoinduced isomerization of 1-phenoxy-5,12
naphthacenequinone, (b) structure of an amine–quinone
adduct, (c) structure of a phenoxyquinone derivative
1.20 Photoisomerisation of thiol-terminated 1,3-
diazabicyclo[3.1.0]hex-3-ene on silver nanoparticles
1.21 Photochromism of indenofused benzopyrans
1.22 Chemical structures of compounds P1 and P2
1.23 Photochromism of dithienylethene
1.24 Structure of bis(spiropyran) podands

1.25 Complexation of bis(spiropyran) podands with Ca ²⁺ ion
1.26 Colorimetric sensing of CN by the SP 2
1.27 Structure of a nitrospiropyran
1.28 Coordination of spiropyrans 1 with metal ions
1.29 Photo-,thermo-,and ionochromism of spiropyra
compounds
1.30 Photochromism of indoline spiropyran
1.31 Structure of SP(I) and (II)
1.32 Photochromism of spiroindolinonaphthooxazines
1.33 Photochromism of a Rhodamine Amide
1.34 Photochromism of Rhodamine B Salicylaldehyde
Hydrazone Metal Complex
1.35 Photochromism of SP
1.36 Chemical structure of (a)spirooxazine and
(b) spiro- pyran
1.37 (a) Spirooxazine and (b) spiropyran before and after
UV irradiation
1.38 Interco version between poly(perhydrosilazane) and
silica
1 30 Schamatic representation of DMC form of SDOU and
1.39 Schematic representation of PMC-form of SPOH and SPCOOH in silica matrix
1.40 Transformation of (a) a spiropyran molecule from spiro
(SP) to merocyanine (MC) forms and vice versa, and of (b
perhydropolysilazane to silica
1.42 Photochromism of 1-Vinylidene-naphthofurans
1.43 Reversible Photochromic Properties of SP-SO ₃ ⁻
1.44 Interconversion Pathways between the Different Forms
Spiropyran Derivatives
1.45 The reactivity of SP-NO ₂ in the presence of UV and
visible lights and with the addition of DBU and CO ₂ gas
1.46 Isomeric structures of spiropyran (SP2), and the metal-
induced ring-opened MC-Zn ²⁺ complex
1.47 Structure and color change of SP1 in the presence of Clauden LIV implication
under UV irradiation
1.48 Structure of bis spiropyran ligand (1)

1.49 Structure of bis spiropyran ligand (2)1.50 Structures of Photochromic Spiropyran 1	
 1.51 Components of a reversible PR fluid. 1.52 Photochromism of SP solution in cyclohexane in the prescence of lecithin and SDC. 1.53 DASAs, a new platform of visible light organic photoswitches. 1.54 Effect of UV, Vis irradiation and pH effect on SPCOOH 	· ·
1.55 Photochromic reactions of two diarylethene nanocrystals1.56 Acidochromic spiropyran-merocyanine interconversion	
1.57 Mecchanism of acidochromic spiropyran-merocyanine interconversion1.58 Structure of bodipy- spirooxazine and spiropyran	
1.59 Some conformers of the open form and the closed form	
of napthoxazine	
1.60 Photochromism of BTE-NA1 and BTE-NA21.61 Structure of 2-(Phenylazo)imidazoles	
1.62 Photochromic reaction of a Diarylethene Having an Azulene Ring	
1.63 Photochromism of the Oxazabicycle 11.64 Structure of the Dronpa chromophore in its cis and trans states	
1.65 Photochromic reaction of paracyclophane-bridged imidazole dimer	
1.66 Open and closed forms of indolylfulgides	
 1.68 Dinuclear molybdenum complex 1.69 Photochromic reaction of aryloxyanthraquinones	
utiivauvt	

1.71 The structural interchange between the SO and M
isomers
1.72 Molecular structures of (a) spiropyran and (b) four
possible isomers of merocyanine
1.73 Four structures attributed to the different steps of the
photocolration reaction's mechanism
1.74 General structures of SPs and their corresponding
MCs
1.75 The photochemical reaction of Py-BIPS
2.1 Ocean optics diode array spectrometer
3.1 SP solution in non-polar and polar solvents
3.2 Effect of the time of UV A-irradiation on the
absorption spectrum of 5x10 ⁻⁵ M of SP in 1,4-Dioxane
3.3 The change in the absorption spectrum of $5x10^{-5}$ M
of SP in 1,4- Dioxane during the dark reaction
3.4 Effect of the time of UV A-irradiation on the
absorption spectrum of 5x10 ⁻⁵ M of SP in benzene
3.5 The change in the absorption spectrum of $5x10^{-5}$ M
of SP in benzene during the dark reaction
3.6 Effect of the time of UV A-irradiation on the absorption
spectrum of 5x10 ⁻⁵ M of SP in toluene
3.7 The change in the absorption spectrum of $5x10^{-5}$ M
of SP in toluene during the dark reaction
3.8 Effect of the time of UV A-irradiation on the
absorption spectrum of 5x10 ⁻⁵ M of SP in cyclohexane
3.9 The change in the absorption spectrum of $5x10^{-5}$ M of
SP in cyclohexane during the dark reaction
3.10 Effect of the time of UV A-irradiation on the
absorption spectrum of 5x10 ⁻⁵ M of SP in n-hexane
3.11 The change in the absorption spectrum of $5x10^{-5}$ M
of SP in n-hexane during the dark reaction
3.12 Effect of the time of UV A-irradiation on the
absorption spectrum of 5x10 ⁻⁵ M of SP in methanol
3.13 The change in the absorption spectrum of $5x10^{-5}$ M
of SP in methanol during the dark reaction
3.14 Effect of the time of UV A-irradiation on the
absorption spectrum of 5x10 ⁻⁵ M of SP in ethanol

3.15 The change in the absorption spectrum of $5x10^{-5}$ M	
of SP in ethanol during the dark reaction	102
3.16 Effect of the time of UV A-irradiation on the	
absorption spectrum of 5x10 ⁻⁵ M of SP in DMSO	103
3.17 The change in the absorption spectrum of $5 \times 10^{-5} \mathrm{M}$	
of SP in DMSO during the dark reaction	103
3.18 Effect of the time of UV A-irradiation on the	
absorption spectrum of 5x10 ⁻⁵ M of SP in DMF	104
3.19 The change in the absorption spectrum of $5 \times 10^{-5} \mathrm{M}$	
of SP in DMF during the dark reaction	104
3.20 First order kinetics plot of the color developing	
reaction, the back reaction and the color switching	
cycle of 5x10 ⁻⁵ M SP in 1,4-Dioxane	108
3.21 First order kinetics plot of the color developing	
reaction, the back reaction and the color switching	
cycle of 5x10 ⁻⁵ M SP in benzene	109
3.22 First order kinetics plot of the color developing	
reaction, the back reaction and the color switching	
cycle of 5x10 ⁻⁵ M SP in toluene	110
3.23 First order kinetics plot of the color developing	
reaction, the back reaction and the color switching	
cycle of 5x10 ⁻⁵ M SP in cyclohexane	111
3.24 First order kinetics plot of the color developing	
reaction, the back reaction and the color switching	
cycle of 5x10 ⁻⁵ M SP in n-hexane	112
3.25 First order kinetics plot of the color developing	
reaction, the back reaction and the color switching	
cycle of 5x10 ⁻⁵ M SP in methanol	113
3.26 First order kinetics plot of the color developing	
reaction, the back reaction and the color switching	
cycle of 5x10 ⁻⁵ M SP in ethanol	114
3.27 First order kinetics plot of the color developing	
reaction, the back reaction and the color switching	
cycle of 5x10 ⁻⁵ M SP in DMSO	115
3.28 First order kinetics plot of the color developing	
reaction, the back reaction and the color switching	116
cycle of 5x10 ⁻⁵ M SP in DMF	

3.29 The switching cycle of 5x10 ⁻⁵ M SP in	
cyclohexane, DMF and ethanol	
3.30 Effect of the time of UV A-irradiation on the absorption	
spectrum of 5x10 ⁻⁵ M of SP in 1,4-Dioxane	
3.31 The change in the absorption spectrum of	
5x10 ⁻⁵ M of SP in 1,4- Dioxane during the back	
reaction	
3.32 Effect of the time of UV A-irradiation on the	
absorption spectrum of 5x10 ⁻⁵ M of SP in mixed	
solvents' system (90% Dioxan+10% water)	
3.33 The change in the absorption spectrum of the back	
reaction of 5x10 ⁻⁵ M of SP in mixed solvents' system (90%	
Dioxan+10% water)	
3.34 Effect of the time of UV A-irradiation on the	
absorption spectrum of 5x10 ⁻⁵ M of SP in mixed	
solvents' system (80% Dioxan+20% water)	
3.35 The change in the absorption spectrum of the	
back reaction of 5x10 ⁻⁵ M of SP in mixed	
solvents' system (80% Dioxan+20% water)	
3.36 Effect of the time of UV A-irradiation on the absorption	
spectrum of 5x10 ⁻⁵ M of SP in mixed solvents' system (70%	
Dioxan+30% water)	
3.37 The change in the absorption spectrum of the back	
reaction of 5x10 ⁻⁵ M of SP in mixed solvents' system (70%	
Dioxan+30% water)	
3.38 Effect of the time of UV A-irradiation on the absorption	
spectrum of 5x10 ⁻⁵ M of SP in mixed solvents' system (60%	
Dioxan+40% water)	
3.39 The change in the absorption spectrum of the back	
reaction of 5x10 ⁻⁵ M of SP in mixed solvents' system	
(60% Dioxan+40% water)	
3.40 Effect of the time of UV A-irradiation on the	
absorption spectrum of 5x10 ⁻⁵ M of SP in mixed	
solvents' system (50% Dioxan+50% water)	

3.41 The change in the absorption spectrum of the	
back reaction of 5x10 ⁻⁵ M of SP in mixed solvents'	
system (50% Dioxan+50% water)	123
3.42 Bar presentation showing the effect of increasing	
water percentage in the mixed solvents' system of	
1,4-dioxane and water on the initial rate constant of the	
back reaction	125
3.43 First order kinetics plot of the color developing	
reaction and the back reaction of 5x10 ⁻⁵ M SP in	
1,4-Dioxane	126
3.44 First order kinetics plot of the color developing	
reaction and the back reaction of 5x10 ⁻⁵ M SP in mixed	
solvents' system (90% 1,4-Dioxane+10%H ₂ O)	126
3.45 First order kinetics plot of the color developing	
reaction and the back reaction and the color switching	
cycle of 5x10 ⁻⁵ M SP in mixed solvents' system	
· ·	127
3.46 First order kinetics plot of the color developing	
reaction and the back reaction and the color switching	
cycle of 5x10 ⁻⁵ M SP in mixed solvents' system	
·	127
3.47 First order kinetics plot of the color developing	
reaction and the back reaction and the color switching	
cycle of 5x10 ⁻⁵ M SP in mixed solvents' system	
· ·	128
3.48 First order kinetics plot of the color developing	
reaction and the back reaction and the color switching	
cycle of 5x10 ⁻⁵ M SP in mixed solvents' system	
·	128
3.49 The switching cycle of $5x10^{-5}$ M SP in Mixed solvents'	
system in 100% 1,4-Dioxane, (90% 1,4-Dioxane+10% H ₂ O),	
(80% 1,4-Dioxane+20% H ₂ O),(70% 1,4-Dioxane+30% H ₂ O),	
(60% 1,4-Dioxane+40% H ₂ O) and	
	129
3.50 Effect of the time of UV A-irradiation on the	
absorption spectrum of SP-PMMA film	
	130

3.51 The SP-PMMA film before and after UV	
irradiation	1
3.52 The change in the absorption spectrum of	
SP –PMMA film during the dark reaction	1
3.53 Effect of the time of UV A-irradiation on the	
absorption spectrum of 7x10 ⁻⁴ M of SP in	
Methyl methacrylate	1
3.54 The change in the absorption spectrum of	
7x10 ⁻⁴ M of SP in MMA during the dark reaction	13
3.55 Bar presentation shows the polymerization effect	
on the initial rate constant of back reaction of SP	13
3.56 First order kinetics plot of the color developing	
reaction, the back reaction and the color switching	
cycle of 7x10 ⁻⁴ M SP in SP-PMMA film	1
3.57 First order kinetics plot of the color developing	
reaction, the back reaction and the color switching	
cycle of 7x10 ⁻⁴ M SP in MMA	1
3.58 The switching cycle of SP in toluene and in PMMA	1
3.59 The change in the absorption spectrum of	
SP-PMMA film before and after immersing in ethanol	
for 40 min	1
3.60 The change in the absorption spectrum of	
SP-PMMA film before and after immersing in ethanol	
for 2 hours	1
3.61 The SP-PMMA film before and after immersing	
in ethanol	1
3.62 Effect of the time of UV A-irradiation on the	
absorption spectrum of 5x10 ⁻⁵ M of SP in 1,4-Dioxane	
(without lanthanide metal ion addition)	1
3.63 The change in the absorption spectrum of $5x10^{-5}$ M	
of SP in 1,4- Dioxane during the dark reaction	
(without lanthanide metal ion addition)	1
3.64 Effect of the time of UV A-irradiation on the	
absorption spectrum of SP in 1,4-Dioxane after the	
addition of Sm ³⁺	1
3.65 The change in the absorption spectrum of SP in	
1,4-Dioxane during the dark reaction after the	1

addition of Sm ³⁺	
3.66 Effect of the time of UV A-irradiation on the	
absorption spectrum of SP in 1,4-Dioxane after the	
addition of Tb ³⁺	142
3.67 The change in the absorption spectrum of SP in	
1,4-Dioxane during the dark reaction after the	4.45
addition of Tb ³⁺	142
3.68 Effect of the time of UV A-irradiation on the	
absorption spectrum of SP in 1,4-Dioxane after the	4.42
addition of Gd ³⁺	143
3.69 The change in the absorption spectrum of SP in 1,4-Dioxane during the dark reaction after the addition	
of Gd ³⁺	143
3.70 Bar presentation represents the effect of the	143
lanthanides addition on the initial rate constant of	
the back reaction	145
3.71 First order kinetics plot of the color developing	
reaction and the back reaction of 5x10 ⁻⁵ M SP in	
1,4-Dioxane	146
3.72 First order kinetics plot of the color developing	
reaction and the back reaction of SP in 1,4-Dioxane after	
the addition of Sm ³⁺	146
3.73 First order kinetics plot of the color developing	
reaction and the back reaction of SP in 1,4-Dioxane	
after the addition of Tb^{3+}	147
3.74 First order kinetics plot of the color developing	
reaction and the back reaction of SP in 1,4-Dioxane after	
the addition of Gd^{3+}	147
3.75 The switching cycle of SP in 1,4-Dioxane without	
the addition of lanthanide ions and after the addition	
of Gd^{3+} , Tb^{3+} , Sm^{3+} ions	148

LIST OF TABLES

LIST OF TABLES

Table	Page
3.1 The solvent polarity parameters, MC half	
life time, initial rate constant of the dark	
reaction and MC maximum wavelength in	
different solvents, MMA and	
PMMA	105
3.2 Effect of increasing distilled water	
percentage in the mixed solvents' system of	
1,4-dioxane and distilled water on the rate	
constants of the color developing and back	
reactions, MC half life time and MC	
maximum wavelength	124
3.3 The polymerization effect on the rate	
constants of the color developing and back	
reactions, MC half life time and MC	
maximum	
wavelength	133
3.4 Effect of the lanthanides' addition on the	
rate constants of the color developing and	
back reactions, MC half life time and MC	
maximum wavelength	144