Does RFA Have a Role in the Treatment Plan of Small Painful Benign Tumors Of Bone?

Thesis

Submitted for partial fulfillment of M.D. Degree in Radiodiagnosis

BY

Ahmed Hosni Kamel

M.Sc. Radiodiagnosis - Cairo University

SUPERVISORS

Prof. Dr. Hazem Mohamed Moguib Moharram

Professor of Radio Diagnosis
Faculty of Medicine
Cairo University

Prof. Dr. Walid Ebeid

Professor of Orthopedics Faculty of Medicine Cairo University

Dr. Amr Abd El-Fattah Nassef

Assistant Professor of Radio Diagnosis Faculty of Medicine Cairo University

Cairo University 2010

Introduction

Osteoid osteomas are benign tumors of the bone typically seen in children and young adults. They cause inflammation, local effects on normal tissue from tumor expansion, and secondary effects and complications (e.g., scoliosis, osteoarthritis). (*Hayes*, 2005)

The disease is self-limiting and pain may disappear after several years of conservative medical treatment, with an average time of pain resolution of 5–6 years. This treatment usually includes aspirin or other non-steroidal anti-inflammatory agents. However, long-term medical therapy may be unacceptable because of refractory pain and complications of chronic anti-inflammatory agents. In addition, osteoid osteoma may occur in articular or peri-articular areas of bone; In such cases, medical therapy may be inadequate and more aggressive interventions are necessary. (*Anthony et al.*, 2003)

Several methods of treatment plan have been utilized as treatment options other than medical management. These options include open surgical resection with intra-lesional, marginal, or wide surgical margins, CT-guided burr ablation and, most recently, CT-guided radiofrequency (RF) ablation. There is general agreement that in open procedures complete removal of the nidus is needed for cure and resolution of symptoms. Fail to do so is usually associated with incomplete relief of symptoms, and an increased risk of local recurrence. Since intra-operative localization of these small lesions can be very difficult, open surgical removal often necessitates considerable resection of bone, and consequently internal fixation and/or bone grafting may be required. Although various localization techniques have been developed to ensure complete removal, the nidus may even be missed at surgery. (*Anthony et al.*, 2003)

Chondroblastoma is a rare, benign, cartilaginous tumor that accounts for approximately 1–2% of all benign bone tumors. (*Christie-Large et al.*, 2008)

Radiofrequency ablation (RFA) is a minimally invasive procedure where cancerous or diseased cells are destroyed using heat produced by high-frequency radio waves. (*Hayes*, 2005)

Percutaneous image-guided radiofrequency ablation (RFA) has been used most often in the treatment of primary and secondary hepatic malignancy. However, researchers are evaluating RFA as a treatment modality in different areas of the body. (*Goetz, et al., 2004*)

Rosenthal et al., 1995 have reported the use of RF ablation for treatment of osteoid osteomas. Dupuy et al., 1998 together with European and American researches have reported that treatment with percutaneous image-guided radiofrequency ablation can result in significant palliation of painful bone tumors. (Goetz et al., 2004).

Percutaneous radio-frequency ablation is a safe and effective first-line treatment for chondroblastoma. The technique is minimally invasive and can apparently be curative. Patients with small initial or recurrent lesions are ideal candidates, although multiple treatments during a single session may be necessary for larger lesions. (**Joel** *et al.*, *2001*)

Regardless of the method of treatment chosen, success is highly dependent on pre-procedural localization of the nidus. CT-guided procedures may reduce morbidity and complications when compared with traditional open surgical resection. (*Lindner et al.*, 2001)

<u>Acknowledgement</u>

Praise be to Allah, who gave me the strength and knowledge to complete the present work.

I would like to express my deepest gratitude and thanks to everyone that helped, encouraged and believed in the value of this piece of work.

Foremost, I would like to express my sincere appreciation to *Prof. Hazem Mohamed Moguib Moharram*, **Professor of Radiodiagnosis**, Faculty of Medicine, Cairo University, for his masterful teaching, enthusiastic encouragement, continuous support and keen supervision. No word can fulfill the feeling of gratitude and respect I carry for him. His never stopping help and advices are corner stones of this work.

Endless thanks to *Dr. Amr A. Nassef*, **Assistant professor of Radiodiagnosis**, Faculty of Medicine, Cairo University, not only for his patience and creative ideas but also for his valuable advices, constructive criticism and excellent supervision. His time and supreme effort are clear in every part of this work.

I would like to express my great thanks to **Prof. Walid Ebeid, Professor of Orthopedic surgery** for his keen supervision, guidance and for the trust he put in me. He is always pushing me to achieve good work.

I also deeply thank **Dr. Mohamed Hamed** and **Dr. Mohamed Hosny** for their guidance and cooperation during this study.

I would also like to thank all my professors, senior stuff members and fellow colleagues in the Radiodiagnosis department for their support and encouragement.

At last, but definitely not least, I would like to thank my entire family for their support and encouragement. No dedication can match theirs.

Table of Contents

I- Review of Literature	
1- Pathology of Extra-Cranial Carotid Arterial Diseases	1
2- Radiological appearance of some small bone tumors	18
3- Principles of Radiofrequency Ablation	39
4- Technique of Radiofrequency ablation of small bone tumors	52
II- Patients and method	68
III- Results	73
IV- Literature Review	86
V - Discussion	91
VI - Conclusion	100
VII - Summary	101
VIII- Illustrative cases	102
IX- References	172
X- Arabic Summary	184

List of Figures

Figure (1) Gross Pathology: Osteoid osteoma.	11
Figure (2) Microscopic Pathology: Osteoid osteoma.	11
Figure (3) Anteroposterior and lateral radiographs of osteoid o	steoma. 18
Figure (4) CT scan of osteoid osteoma.	21
Figure (5) MRI scan of osteoid osteoma.	23
Figure (6) Tibial osteoid osteoma.	25
Figure (7) Anteroposterior and lateral radiographs of phalange	eal –
enchondroma	27
Figure (8) Anteroposterior and lateral radiographs of Chondro	myxoid
Fibroma.	31
Figure (9) MRI of Chondromyxoid Fibroma.	34
Figure (10) MRI of chondroblastoma.	37
Figure (11) Schematic illustration of percutaneous radiofreque	ency (RF)
ablation in the liver.	41
Figure (12) A diagram illustrates the interdependency of temporary	erature and
radius around a single needle electrode	42
Figure (13) Various radiofrequency (RF) electrodes.	47
Figure (14) Valley Lab Radionics generator.	49
Figure (15) RF 3000 Boston Scientific generator.	49
Figure (16) Rita 1500 generator.	49
Figure (17) Valley-lab Tyco AC1510 needle.	55
Figure (18) Boston scientific Soloist needle.	56
Figure (19) Ablation zone of the soloist needle.	56
Figure (20) RITA StarBurst SDE RFA needle	57
Figure (21) Grounding pad placement	58
Figure (22) A power drill.	60
Figure (23 a and b) Osteoid osteoma of left acetabulum.	65
Figure (24 a and b) osteoid osteoma of left pedicle L3 vertebra.	66
Figure (25 a and b) osteoid osteoma of left index finger metacat	rpal. 67
Figure (26) The Wong-Baker scale	69
Figure (27) BONE-CORE. Bone Biopsy needles, Cook.	71
Figure (28) Pre-treatment pain score.	75
Figure (29) post-treatment pain score pre and after one, 6 and 12 r	months. 77
Figure (30) Pain score after 1, 6 and 12 months.	80
Figure (31) Mean pain score post RF ablation compared to pre-	-treatment
pain score.	81
Figure (32) Post RF ablation radiological changes after 6 mont	hs following
RFA session.	82
Figure (33) Primary clinical success rate.	84
Figure (34) Post procedure complications.	85

Figure (35) to figure (39)	Case 1
Figure (40) to figure (42)	Case 2
Figure (43) to figure (46)	Case 3
Figure (47) to figure (48)	Case 4
Figure (49) to figure (51)	Case 5
Figure (52) to figure (53)	Case 6
Figure (54) to figure (57)	Case 7
Figure (58) to figure (61)	Case 8
Figure (62) to figure (66)	Case 9
Figure (67) to figure (71)	Case 10
Figure (72) to figure (75)	Case 11
Figure (76) to figure (78)	Case 12
Figure (79) to figure (82)	Case 13
Figure (83) to figure (86)	Case 14
Figure (87) to figure (89)	Case 15

List of Tables

Table (1) Histological Typing of Primary Bone Tumor and Tu	mor -Like
Lesions	1
Table (2) Individual pre-treatment pain score	74
Table (3) Pre treatment pain score- statistics.	75
Table (4) Individual post-treatment pain score pre and after of	one, 6 and
12 months.	76
Table (5) Mean, minimum and maximum post-treatment pain s	score after
1, 6 and 12 months.	78
Table (6) pain score after 1, 6 and 12 months- statistics.	78
Table (7) RF ablation radiological changes after 6 months fol	lowing RFA
session- statistics.	82
Table (8) Incidence of complications-statistics.	85

List of Abbreviations

18-FDG 18-fluorodeoxyglucose

99m Tc technetium-99m

99m Tc technetium-99m

AP Antero-posterior

C.P.T.M Center for Preservation and Transplantation of

Musculoskeletal Tissues

CA California

cm centimeter

CMF Chondromyxoid Fibroma

CMFs Chondromyxoid Fibromas

CT Computerized tomography

G Gauge

GCTTS giant cell tumor of the tendon sheath

GHz Gigahertz

hr hour

kHz Kilohertz

kV kilovolt

LITT laser interstitial thermal therapy

minminutemLmillilitremmmillimeter

MRI Magnetic resonance imaging

NICE The National Institute for Health and Clinical Excellence

NSAIDs non-steroidal anti-inflammatory drugs

PET Positron emission tomography

PVNS pigmented villo-nodular synovitis

RF Radiofrequency

RFA Radiofrequency ablation

SIR The Society of Interventional Radiology

USA United States of America

W watt

WHO World Health Organization

Aim of Work

The aim of work is to practice and to demonstrate the techniques, advantages, drawbacks and efficacy of the radiofrequency ablation as well as to set its role in management of small painful bone tumors.

الدور التداخلي للتردد الحراري في علاج اورام العظام الحميدة رسالة مقدمة توطئة للحصول على درجة الدكتوراة في الأشعة التشخيصية

مقدمة من الطبيب / أحمد حسني كامل ماجستير الأشعة التشخيصية

تحت إشراف أد حازم محمد مجيب محرم أستاذ الأشعة التشخيصية كلية الطب جامعة القاهرة أد وليد عاطف عبيد أستاذ أمراض العظام كلية الطب جامعة القاهرة

د. عمرو عبد الفتاح ناصف أستاذ مساعد الأشعة التشخيصية كلية الطب جامعة القاهرة

كلية الطب – جامعة القاهرة 2010

Abstract

Radiofrequency ablation of osteoid osteoma is a highly effective, efficient, minimally invasive and safe method of treating osteoid osteoma.

The scientific peer-reviewed literature supports the treatment of osteoid osteoma with radiofrequency ablation (RFA). RFA provides outcomes comparable to those of surgical excision, with destruction of the tumor nidus and relief of symptoms in 70-100% of patients. Due to the difficulty locating the nidus, surgical treatment may result in weakening of the remaining bone, necessitating grafting or internal fixation. These complications are avoided with RFA. Results of the peer-reviewed literature support the use of RFA for the treatment of osteoid osteoma.

Key word: Radio-Frequency, benign, bone tumor.

Classification of bone tumors

It may be convenient to classify bone tumors according to their cell of origin or histogenesis. However, histologically the exact cell of origin of a tumor is not always certain and typing may depend only on the cell or cells that predominate in the developed lesion. (*Dahlin & Krishnan*, 1986)

Table 1- Histological Typing of Primary Bone Tumor and Tumor -Like Lesions (*modified from WHO classification*):

	Benign	Malignant
I. Bone-forming tumors	Osteoma	Osteosarcoma
	Osteoid osteoma	Parosteal osteosarcoma
	Osteoblastoma	Periosteal osteosarcoma
		Telangiectatic osteosarcoma and many other types
II. Cartilage-forming	Chondroma	Chondrosarcoma
tumors	Osteochondroma (cartilage capped	Mesenchymal chondrosarcoma
	exostosis)	Clear-cell chondrosarcoma
	Chondroblastoma	
	Chondromyxoid fibroma	
III. Giant cell tumor	Giant cell tumor	Malignant giant cell tumor
IV. Marrow tumors		Ewing's sarcoma
a. Round cell tumors		Atypical Ewing's sarcoma
		Primitive neuroectodermal tumors
b. Lymphoma		Hodgkin's disease
		Non-Hodgkin's lymphoma