RESPONSE OF WATER USE EFFICIENCY TO SOIL MANAGEMENT PRACTICES AND WATER TABLE LEVELS

By

SHEREEN AHMED HAMED SAAD

B. Sc. Agric. Sc. (Soil Science), Ain Shams University, 2003 M. Sc. Agric. Sc. (Soil Science), Ain Shams University, 2007

A thesis submitted in partial fulfillment of the requirements for the degree of

in Agriculture Science (Soil Science)

Department of Soil Science Faculty of Agriculture Ain Shams University

2014

Approval Sheet

RESPONSE OF WATER USE EFFICIENCY TO SOIL MANAGEMENT PRACTICES AND WATER TABLE LEVELS

By

SHEREEN AHMED HAMED SAAD

B. Sc. Agric. Sc. (Soil Science), Ain Shams University, 2003 M. Sc. Agric. Sc. (Soil Science), Ain Shams University, 2007

Dr. Ahmed Abd El Kader Ali Taha..... Prof. of Soil Science, Faculty of Agriculture, Mansoura University Dr. Moneer Abdo AZIZ......

Prof. Emeritus of Soil Science, Faculty of Agriculture, Ain Shams University

Dr. Eid Morsy Khaled

This thesis for Ph. D. degree has been approved by:

Prof. Emeritus of Soil Science, Faculty of Agriculture, Ain Shams University

Dr. El-Toni Mohamed Ali El-Toni

Prof. Emeritus of Soil Science, Faculty of Agriculture, Ain Shams University

Date of Examination: 6 / 8 /2014

RESPONSE OF WATER USE EFFICIENCY TO SOIL MANAGEMENT PRACTICES AND WATER TABLE LEVELS

Ву

SHEREEN AHMED HAMED SAAD

B. Sc. Agric. Sc. (Soil Science), Ain Shams University, 2003 M. Sc. Agric. Sc. (Soil Science), Ain Shams University, 2007

Under the supervision of:

Dr. El-Toni Mohamed Ali El-Toni

Prof. Emeritus of Soil Science, Department of Soil Science, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Eid Morsy Khaled

Prof. Emeritus of Soil Science, Department of Soil Science, Faculty of Agriculture, Ain Shams University

Dr. Said El-Sayed Mohamed Heggy

Prof. Emeritus of Physics and Chemistry, Department of Soil Science, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt

ABSTRACT

Shereen Ahmed Hamed Saad: Response of Water Use Efficiency to Soil Management Practices and Water Table Levels. Unpublished Ph.D. thesis, Department of Soil Science, Faculty of Agriculture, Ain Shams University, 2014.

Two experiments were carried out in eighteen double wall concrete lysimeters of the size 1.25 m × 1.25 m and 1.25 m deep using the cultivar Faba bean (*Vicia Faba* L.) and Corn (*Zea mays* L.) during, 2010 and 2011 seasons, respectively as a test plants to estimate the contribution of water table to meet the water requirements, the impact soil management practices including compost; and the interaction effect of both of them on yield of either faba bean or corn crop. The lysimeters were connected to a tank with Marriotte siphon and a piezometer to maintain the water table level at the desired depths, which consisted of 50, 70 and 90 cm from the soil surface. There were two compost treatments, which consisted without compost and with compost treatments. The amount of compost was 20 Ton per feddan, which mixed with the 30 cm depth from the soil surface.

The results of this study showed that there is no high difference between the values of actual evapotranspiration (Et_a) for both faba bean and corn crops under the three levels of water table. It slightly increased with increasing water table depth. As well as, 70 cm water table level showed that it can be consider suitable conditions. At this level, the amount of water was meet the requirements of both faba bean and corn crops which cause a significant high values of its water use efficiency (WUE), water economy (WE), total and available nutrients N, P, K, Fe, Mn and Zn status in the soil profile and different organs of these two crops and also a maximum grain yield. Compared to a high water table level 50 cm or a deep water table level 90 cm where, the crop depends basically on the water irrigation requirements. As well as, compost application is very important, these favorable significant effect ascribed not only for its plant providing by enhancing the growth or by increasing availability of nutrients to its nutritional requirements without any undesirable impacts on the environment but also, for improving physical, chemical and biological soil properties consequently that can led to the enhances soil water storage in the rooting zone which led to enhancing the yield,

28

water use from water table , water use from irrigation water, Et_a , WUE and WE of faba bean and corn crops.

We should put into considerations also that, the effect of interaction between both the water table levels and compost treatments, where there are significant differences between the treatments. 70 cm water table level with compost showed the highest values, while 90 cm water table level without compost treatments showed the lowest values of all the parameters under study.

Key Words: Water table contribution, Compost, Crop water requirements, Faba bean, Corn, Nutrient content.

ACKNOWLEDGMENT

I would be honored to convey my deepest thanks and sincere appreciation to **Prof. Dr. El-Toni Mohamed Ali El-Toni** and **Prof. Dr Eid Morsy Khaled** Professors of Soil Science, Faculty of Agriculture, Ain Shams University, for their supervision, constructive guidance, encouragement's and continuous valuable help throughout the course of this investigation and preparation of the manuscript.

Also, I wish to extend my deep gratitude and sincere thanks to **Dr. Said El-Sayed Mohamed Heggy** Professor of Physics and Chemistry Dept. of soil, water and environment Research institute, ARC. Center for his kind supervision, advice, valuable assistance, and faithful attitude during the preparation of this thesis.

The author wills never forget the efforts and encouragement of everyone who have helped in the performance of this work, especially in Physics and Chemistry Dept. of soil, water and environment research institute, ARC.

I am particularly grateful to my family for their help and continuous encouragement allover my life.

CONTENTS

	LIST OF TABLES	iii
	LIST OF FIGURES	X
1	INTRODUCTION	1
2	REVIEW OF LITERATURE	4
2.1	Water table	4
2.2	Compost	13
2.3	The interaction effect between water table and compost in the soil	22
3.	MATERIALS AND METHODS	24
3.1	The experimental layout	24
3.2	The experimental treatments	26
3.3	Determination of Et _o	28
3.4	Determination of actual evapotransipration	28
3.5	Calculation of crop coefficient (K _c)	30
3.6	Water economy	31
3.7	Water use efficiency (WUE)	31
3.8	Plant Analysis	31
3.9	Yield	33
3.10	and statistical analysis Experimental design	33
4.	RESULTS AND DISCUSSION	34
4.1	Climatic conditions and reference evapotranspiration (Et _o)	34
4.2.	Water used from water table	38
4.3	Water used from Irrigation water	45
4.4	Actual evapotranspiration (Et _a)	58
4.5	Crop coefficient (K _c)	76
4.6	Water economy of faba bean and corn crops	87
4.7	Water use efficiency (WUE) of faba bean and corn crops	92
4.8	Nutritional status in the soil profile	97
4.9	Nutritional status in the faba bean and corn crops	125

4.10	Grain yield (g /plant):-	148
5	SUMMARY AND CONCLUSION	165
6	REFERENCES	171
7	ARABIC SUMMARY	

LIST OF TABLES

Table (1)	Some physical properties of the soil	25
Table (2)	Some chemical properties of the soil	25
Table (3)	Chemical, physical and biological composition of compost	27
Table (4)	Weekly climatic conditions and reference evapotranspiratio (Eto)	
	(mm/day) in Ain shams university site during faba bean crop season of	
	(2009-2010)	36
Table (5)	Weekly climatic conditions and reference evapotranspiration (Eto)	
	(mm/day) in Ain shams university site during corn crop season of	
	2010-2011	37
Table (6)	Water use from water table (liter/period) for faba bean crop under	
	different water table levels with and without compost treatments	41
Table (7)	Water use from water table (liter/period) for corn crop	
	under different water table levels with and without compost	
	treatments	42
Table (8)	Water use from irrigation water (liter/period) for faba bean	
	crop under 50 cm level of water table with and without	
	compost treatments through the soil profile	
	layers	51
Table (9)	Water use from irrigation water (liter/period) for faba bean	
	crop under 70 cm level of water table with and without	
	compost treatments through the soil profile	
	layers	52
Γable (10)	Water use from irrigation water (liter/period) for faba bean crop under	
	90 cm level of water table with and without compost treatments through	
	the soil profile layers	53

Table (11)	Water use from irrigation water (liter/period) for corn crop under 50 cm level of	
	water table with and without compost treatments through the soil profile	
	layers	54
Table (12)	Water use from irrigation water (liter/period) for corn crop under 70 cm level of	
	water table with and without compost treatments through the soil profile	
	layers	55
Table (13)	Water use from irrigation water (liter/period) for corn crop under 90 cm level of	
	water table with and without compost treatments through the soil profile	
	layers	56
Table (14)	Actual evapotranspiration (Et _a) of faba bean crop under 50 cm water table level	
	with and without compost treatments	66
Table (15)	Actual evapotranspiration (Et _a) of faba bean crop under 70 cm cm water table level	
	with and without compost treatments	67
Table (16)	Actual Actual evapotranspiration (Eta) of faba bean crop under 90 cm cm water	
	table level with and without compost treatments	68
Table (17)	Actual evapotranspiration (Et _a) of corn crop under 50 cm level of water table with	
	and without compost treatments	70
Table (18)	Actual evapotranspiration (Et _a) of corn crop under 70 cm level of water table with	
	and without compost treatments	71
Table (19)	Actual evapotranspiration (Et _a) of corn crop under 90 cm level of water table with	
	and without compost treatments	72
Table (20)	Crop coefficient (Kc) for faba bean crop under different water table levels with and	
	without compost treatments	0.1
T.1.1. (21)		81
Table (21)	Crop coefficient(Kc) for corn under different water table levels with and without	
	compost treatments	83
Table (22)	Seasonal total nitrogen content (%) and its distribution in the soil profile of faba	
	bean plant under different water table levels with and without compost	
	treatment	99

Table	Seasonal total nitrogen content (%) and its distribution in the soil
(23)	profile of corn plant under different water table levels with and
	without compost treatment
Table	Seasonal total phosphorus content (%) and its distribution in the soil
(24)	profile of faba bean plant under different water table levels with and
	without compost treatment.
Table	Seasonal total phosphorus content (%) and its distribution in the soil
(25)	profile of corn plant under different water table levels with and
	without compost treatment
Table	Seasonal total potassium content (%) and its distribution in the soil
(26)	profile of faba bean plant under different water table levels with and
	without compost treatment
Table	Seasonal total potassium content (%) and its distribution in the soil
(27)	profile of corn plant under different water table levels with and
	without compost treatment.
Table	Seasonal total Fe content (ppm) and distribution in the soil profile of
(28)	faba bean plant under different water table levels with and without
	compost treatment.
Table	Seasonal total Fe content (ppm) and distribution in the soil profile of
(29)	corn plant under different water table levels with and without
	compost treatment.
Table	Seasonal total Mn content (ppm) and its distribution in the soil profile
(30)	of faba bean plant under different water table levels with and without
	compost treatment
Table	Seasonal total Mn content (ppm) and its distribution in the soil profile
(31)	of corn plant under different water table levels with and without
	compost treatment

i abi	Seasonal total Zn content (ppm) and its distribution in the soil
e	profile of faba bean plant under different water table levels with and
(32)	without compost
	treatment
Tabl	Seasonal total Zn content (ppm) and its distribution in the soil
e	profile of corn plant under different water table levels with and
(33)	without compost
(55)	treatment
Tabl	Available N (ppm) and its distribution in the soil profile of faba
e	bean plant under different water table levels with and without
(34)	compost
	treatment
Tabl	Available N (ppm) and its distribution in the soil profile of corn
e	plant under different water table levels with and without compost
(35)	treatment
Tabl	Table (36) Available P (ppm) and its distribution in the soil profile
e	of faba bean plant under different water table levels with and
(36)	without compost
` '	treatment
T.1.1	
Tabl	Available P (ppm) and its distribution in the soil profile of corn
e (27)	plant under different water table levels with and without compost
(37)	treatment
Tabl	Available K (ppm) and its distribution in the soil profile of faba
e	bean plant under different water table levels with and without
(38)	compost
	treatment
Tabl	Available K (ppm) and its distribution in the soil profile of corn
e	plant under different water table levels with and without compost
(39)	treatment

Table	Available Fe (ppm) and its distribution in the soil profile of faba bean	
(40)	plant under different water table levels with and without compost treatment	118
Table	Available Fe (ppm) and its distribution in the soil profile of corn plant	
(41)	under different water table levels with and without compost	
	treatment	118
Table	Available Mn (ppm) and its distribution in the soil profile of faba bean	
(42)	plant under different water table levels with and without compost	
	treatment.	120
Table	Available Mn (ppm) and its distribution in the soil profile of corn plant	
(43)	under different water table levels with and without compost	
	treatment	120
Table	Available Zn (ppm) and its distribution in the soil profile of faba bean	
(44)	plant under different water table levels with and without compost	
	treatment	122
Table	Available Zn (ppm) and its distribution in the soil profile of corn plant	
(45)	under different water table levels with and without compost	
	treatment	122
Table	Nitrogen content (%) and its distribution in the different parts of faba	
(46)	bean plant under different water table levels with and without compost	
	treatment	127
Table	Nitrogen content (%) and its distribution in the different parts of corn	
(47)	plant under different water table levels with and without compost	
	treatment	128
		120

Table	Phosphorus content (%) and its distribution in the different parts of faba	
(48)	bean plant under different water table levels with and without compost	
	treatment	131
Table	Phosphorus content (%) and its distribution in the different parts of corn	
(49)	plant under different water table levels with and without compost	
	treatment	132
Table	Potassium content (%) and its distribution in the different parts of faba	
(50)	bean plant under different water table levels with and without compost	
	treatment	135
Table	Potassium content (%) and its distribution in the different parts of	133
	-	
(51)	corn plant under different water table levels with and without	
	compost reatment	136
Table	Fe content (ppm) and its distribution in the different parts of faba	
(52)	bean plant under different water table levels with and without	
	compost treatment.	139
Table	Fe content (ppm) and distribution in the different parts of corn plant	
(53)	under different water table levels with and without compost	
	treatment	140
T. 1. 1.	Manager (com) and the Both Com to the Both control of Cha	140
Table	Mn content (ppm) and its distribution in the different parts of faba	
(54)	bean plant under different water table levels with and without	
	compost treatment.	143
Table	Mn content (ppm) and its distribution in the different parts of corn	
(55)	plant under different water table levels with and without compost	
	treatment	144

Table	Zn content (ppm) and its distribution in the different parts of faba	
(56)	bean plant under different water table levels with and without	
	compost treatment.	146
Table	Zn content (ppm) and its distribution in the different parts of corn	
(57)	plant under different water table levels with and without compost	
	treatment	147