

ثبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15-25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Instrumental Methods for Determination of Some Antihistaminics

THESIS '

Presented by
Hanaa Karam Y. Mikael
(B. Pharmaceutical Sciences, 1988)
Cairo University

Presented for the Partial Fulfillment of
Master Degree
In
Pharmaceutical Sciences
(Analytical Chemistry)

Supervized by

Prof.Dr. MOUSTAFA S. TAWAKKOL Vice President and Dean of Faculty of Pharmacy Misr University for Science and Technology

Prof. Dr. NAGLAA M. ELKOUSY
Professor Dr. of Pharmaceutical Chemistry
National Organization for Drug
Control and Research

Prof. Dr. AZZA A. M. MOUSTAFA
Professor Dr. of Analytical Chemistry
Faculty of Pharmacy Cairo
University

2001

4105

Approval Sheet

This thesis has been approved by the committee in charge:

Prof. Dr. M. Abd El Hady.
 Professor of Analytical Chemistry,
 Dean of Faculty of Pharmacy,
 Alexandria University.

Mahdellt) Laile Abdel Fattah

- 2. Prof. Dr. L. E. Abd El Fattah.
 Professor of Analytical Chemistry,
 Faculty of Pharmacy,
 Cairo University.
- 3. Prof. Dr. M. S. Towakkol
 Professor of Analytical Chemistry,
 Vice President and Dean of
 Faculty of Pharmacy,
 Misr University for Science and Technology. (supervisor)
- 4. Prof. Dr. A. A. M. Moustafa
 Professor of Analytical Chemistry,
 Faculty of Pharmacy,
 Cairo University. (supervisor)

Azza Aziz

Note

Beside the work carried in this thesis, the candidate has attended and successfully passed the postgraduate courses examination with the grades mentioned in the following:

- Quality Control Excell	ent
- Quality Com	
- Stability Indicating Methods Very	Good
- Bioavailability Excel	lent
- Instrumental Analysis Very	Good
- Computer and its Application Very	Good
- Searching in Literature Very	Good
- Statistics Excel	lent
- Higher Mathematics Very	Good

Prof. Dr. B. E. El-Zeany
Prof. and Head of Analytical Chemistry Department
Faculty of Pharmacy
Cairo University

ACKNOWLEDGEMENT

I am deeply grateful to Prof. Dr M. S. Tawakkol, Professor of Analytical Chemistry, Vice President and Dean of Faculty of Pharmacy Misr University for Science and Technology (MUST), for his kind supervision, valuable advices, continuous encouragement and guidance, as well as for his constructive comments and kind help during all stages of this thesis.

I would like to convey my deep appreciation to Prof. Dr. N. El Kousy, Professor of Pharmaceutical Chemistry, NODCAR, for her sincere help, beneficial discussions and fruitful criticism.

I am also indebted to Prof. Dr. A.A. Moustafa Professor of Analytical Chemistry, Faculty of Pharmacy, Cairo University, for her kind guidance and sincere help.

Thanks to Professor Dr. A. M. Moloukia, chairman of the National Organization for Drug Control and Research for his encouragement and for all colleagues and assistants in the National Organization for Drug Control and Research, for their kind help.

Iam greatly grateful to my parents and husband for their help, support, patience, assistance and encouragement.

Hanaa Karam

CONTENTS

-The A	m of this Workxviii	
-Prefa	exix	
PART	I:General Introduction and Literature Review	
I.1	General Introduction	
I.1.1	Definition, History and Classification	
I.2	Literature Review	
I.2.1	Acrivastine	
I.2.2	Astemizole	
I.2.3	Terfinadine	
PAR'	II: Spectrophotometric and Spectrofluorimetric Methods for the	<u>1e</u>
<u>Deter</u>	ination of Acrivastine, Astemizole and Terfinadine Using Ac	<u>id</u>
Dye 7	echnique:	
П.1	Introduction	
II.2	Experimental	
II.2.1	Apparatus	
II.2.2	Materials	
II.2.2	Reagents	
II.2.2	Pure Samples and Pharmaceutical Preparations 26	
II.2.3	Standard Solutions	
II.2.4	Test Solutions for Pharmaceutical Preparations 28	
П.2.5	Colorimetric Methods Using Eosin B and TOO 28	
II.2.5	Procedure	
II.2.5	2. Optimization of Reactions Conditions	
II.2.5	2.1 Determination of Wavelength of Maximum	

	Absorption of the Formed Ion Pair	29
II.2.5.2.2	Effect of pH and Volume of Buffer on the Reaction	32
II.2.5.2.3	Effect of Extracting Solvent	32
II.2.5.2.4	Effect of Volume of Dye Solution	32
II.2.5.2.5	Effect of Phase Volume Ratio	36
II.2.5.2.6	Effect of Time and Number of Extractions	37
II.2.5.2.7	Stability of the Color	37
II.2.5.2.8	Assessment of the Stoichiometry of the Reactions	37
II.2.5.2.9	Linearity of Absorbance to Concentration of Drugs	
	and Reproducibility of the Results	43
II.2.5.2.10	Application of the Proposed Procedures for the	
	Determination of the Investigated Drugs in their	
	Dosage Forms	50
II.2.6.	Spectrofluorimetric Method Using Eosin B	55
II.2.6.1	Determination of Excitation and Emission Maxima for	
	the Reaction Products of Antihistaminic Drugs with	
	Eosin B	55
II.2.6.2.	Procedures	55
II.2.6.2.1	Linearity of Fluorescence Intensity to Concentration	
	of Drugs and Reproducibility of the Result	55
II.2.6.2.2	Application of the Proposed Spectrofluorimetric	
	Procedure for the Determination of the Investigated	
	Drugs in their Dosage Forms	61
II.2.7	Statistical Analysis of the Results	66
II.2.8.	Discussion	69

PART III	: Spectrophotometric Methods for the Determination	<u>1 of</u>
	and Astemizole Using Charge Transfer Technique U	
Iodine, DD	Q and TCNE:	
III.1	Introduction	72
III.2	Experimental	73
III.2.1	Apparatus	73
III.2.2	Materials	74
III.2.2.1	Reagents	74
III.2.2.2	Pure Samples and Pharmaceutical Preparations	74
III.2.3	Standard Solutions	74
III.2.4	Test Solutions for Pharmaceutical Preparations	74
III.2.5	Procedures	75
III.2.6.	Optimization of Reaction Conditios	76
III.2.6.1	Determination of Wavelength of Maximum	
	Absorption	76
III.2.6.2	Effect of Solvents	78
III.2.6.3	Effect of Volume of Reagent Solution	78
III.2.6.4	Effect of Time and Heating Temperature	78
III.2.6.5	Assessment of the Stoichiometry of the Reaction	82
III.2.6.6	Linearity of Absorbance to Concentration of Drugs	
	and Reproducibility of the Results	82
III.2.6.7	Application of the Proposed Procedures for the	
•	Determination of the Investigated Drugs in their	
	Pharmaceutical Dosage Forms	95
III.2.7	Statistical Analysis of the Results	102
III.2.8.	Discussion	105

PART IV	: TLC and HPLC Methods for the Determination and St	ability
Testing of	Acrivastine:	
IV.1	Introduction	108
	Section A: TLC Method for the Determination and	
	Stability Testing of Acrivastine	
IV.A.1	Experimental	110
IV.A.1.1	Apparatus	110
IV.A.1.2	Chemicals and Solvents	110
IV.A.1.3	Pure Samples and Pharmaceutical Preparations	110
IV.A.1.4.	Standard Solutions	111
IV.A.1.5.	Test Solutions for Pharmaceutical Preparations	111
IV.A.1.6.	Preparation of the Degradation Products	111
IV.A.1.7.	Preparation of the Laboratory Prepared Mixtures	112
IV.A.2.	Chromatography	112
IV.A.2.1	Optimization of the Separation	112
IV.A.2.2	Procedures for Construction of Calibration Curve and	
	Reproducibility of the Results	114
IV.A.2.3.	Application of the Proposed Procedures for the	
	Determination of Acrivastine in Semprex Capsules	115
IV.A.2.4.	Determination of Acrivastine in Presence of its	
	Degradation Products	115
IV.A.3.	Statistical Analysis of the Results	121
IV.A.4.	Discussion	122
	Section B: HPLC Method for the Determination and	
	Stability Testing of Acrivastine	
IV.B.1	Experimental	123
IV.B.1.1	Apparatus	123
IV.B.1.2	Chemicals and Solvents	123

IV.B.1.3	Pure Samples and Pharmaceutical Preparations	123
IV.B.1.4.	Standard Solutions	124
IV.B.1.5.	Test Solutions for Pharmaceutical Preparations	124
IV.B.1.6.	Preparation of Laboratory Prepared Mixtures	124
IV.B.2.	Chromatography	124
IV.B.2.1	Optimization of the Separation	124
IV.B.2.2	Procedures for Construction of Calibration Curve and	
	Reproducibility of the Results	125
IV.B.2.3.	Application of the Proposed Procedures for the	
	Determination of Acrivastine in Semprex Capsules	125
IV.B.2.4.	Determination of Acrivastine in Presence of its	
	Degradation Products	126
IV.B.3.	Statistical Analysis of the Results	132
IV.B.4.	Discussion	133
References		135

List of Figures

Figure		Page
(1)	Absorption Spectra of Eosin B Complexes in Chloroform with	
	Acrivastine $(7 \mu \text{ g.ml}^{-1})$, Astemizole $(3 \mu \text{ g.ml}^{-1})$ and Terfinadine	
	$(10\mu\mathrm{g.ml}^{-1})$	30
(2)	Absorption Spectra of TOO Complexes in Chloroform with	
	Acrivastine $(3.5 \mu\text{g.ml}^{-1})$, Astemizole $(6 \mu\text{g.ml}^{-1})$ and Terfinadine	
,	$(2.5 \mu\mathrm{g.ml}^{-1}).$	31
(3)	Effect of pH on the Absorbance of the Reaction Product of the	
	Drugs with Eosin B. Acrivastine (10μ g.ml ⁻¹), Astemizole (10μ g	
	ml ⁻¹) and Terfinadine (20 μ g.ml ⁻¹)	33
(4)	Effect of pH on the Absorbance of the Reaction Product of the	
٠	Drugs with TOO. Acrivastine $(10 \mu\text{g.ml}^{-1})$, Astemizole $(10 \mu\text{g.ml}^{-1})$	
	and Terfinadine (20 μ g.ml ⁻¹).	33
(5)	Effect of Volume of McIlvaine's Buffer on the Reaction with	
	EosinB.Acrivastine $(10 \mu\text{g.ml}^{-1})$, Astemizole $(10 \mu\text{g.ml}^{-1})$ and	
	Terfinadine $(10 \mu\text{g.ml}^{-1})$.	34
(6)	Effect of Volume of McIlvaine's Buffer on the Reaction with TOO.	
	Acrivastine $(10 \mu\text{g.ml}^{-1})$, Astemizole $(10 \mu\text{g.ml}^{-1})$ and Terfinadine	
	$(20 \mu\mathrm{g.ml}^{-1}).$	34
(7)	Effect of Volume of 0.5% w/v Eosin B on the Reaction. Acrivastine	
	$(10 \mu\mathrm{g.ml}^{-1})$, Astemizole $(10 \mu\mathrm{g.ml}^{-1})$ and Terfinadine $(20 \mu\mathrm{g.ml}^{-1})$.	
		35
(8)	Effect of Volume of 0.1% w/v TOO on the Reaction. Acrivastine	
	$(10 \mu\text{g.ml}^{-1})$, Astemizole $(10 \mu\text{g.ml}^{-1})$ and Terfinadine $(20 \mu\text{g.ml}^{-1})$.	35
(9)	Effect of Time of Extraction in Eosin B Method. Acrivastine	