

PREDICTION OF SHEAR BEHAVIOR OF FIBER REINFORCED CONCRETE BEAMS USING NEURAL NETWORKS

By

Shaimaa Abd El-Tawab Mohamed

B.Sc. in Civil Engineering Cairo University

A Thesis Submitted to the Faculty of Engineering, Cairo University In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE IN STRUCTURAL ENGINEERING

FACULTY OF ENGINEERING CAIRO UNIVERSITY GIZA, EGYPT 2016

PREDICTION OF SHEAR BEHAVIOR OF FIBER REINFORCED CONCRETE BEAMS USING NEURAL NETWORKS

By

Shaimaa Abd El-Tawab Mohamed

B.Sc. in Civil Engineering Cairo University

A Thesis Submitted to the
Faculty of Engineering, Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE IN STRUCTURAL ENGINEERING

Under the Supervision of

Prof. Dr. Mostafa Fouad El-Kafrawy

Professor of concrete structures
Structural Engineering Department
Faculty of Engineering
Cairo University

Dr. Ahmed Mohamed El-Nady

Associate Professor Structural Engineering Department Faculty of Engineering Cairo University

Dr. Tamer El-Sayed Ahmed Said

Researcher of Structural Engineering Engineering Division National Research Center Cairo - Egypt

FACULTY OF ENGINEERING CAIRO UNIVERSITY GIZA, EGYPT 2016

Acknowledgments

Actually, It has been an immense pleasure to express my sincere appreciation and deep gratitude to Prof. Dr. Mustafa Fouad El-Kafrawy, Professor emeritus of concrete structures, Structural Engineering Department, Faculty of Engineering, Cairo University, for his ongoing support, kind guidance, and constructive rich suggestions.

I would also like to express my deep appreciation, sincere gratitude and faithful thanks, to Dr. Ahmed El-Nady, Associate Professor of concrete structures, Structural Engineering Department, Faculty of Engineering, Cairo University, Deep thanks go to him for all the facilities and extended experiences he provided while implementing the entire course of this research. His continuous encouragements and follow ups are the keystone of the completion of this study.

Gratitude and cordial thanks go to Dr. Tamer El-Sayed Ahmed, Researcher of Structural Engineering, Civil Engineering Division National Research Center (NRC), for his illuminating guidance. His encouragement, support and assistance were of great importance, both at inception and conclusion of the research work.

Finally, my heartily wishes are to my family for their encouragement and support during this work.

Dedication

To Ethics Establishers, My Parents

To supporter, My Husband

Table of Contents

Acknowledgments	i
Dedication	ii
Table of Contents	iii
List of Tables	vii
List of Figures	viii
Abstract	X
Chapter 1	
1 INTRODUCTION	1
1.1 GENERAL	1
1.2 PROBLEM STATEMENT	1
1.3 OBJECTIVES	2
1.4 OUTLINE OF THE THESIS	3
Chapter 2	
2 LITERATURE REVIEW	3
2.1 OBJECTIVE	4
2.2 FIBERS	3
2.2.1 Background of Fiber Reinforced Concrete (FRC)	3
2.2.2 Types of Fibers	3
2.2.3 Advantages and Disadvantages of Using Fibers	7
2.3 SHEAR STRENGTH IN FIBER REINFORCED CONCRETE BEAMS	7
2.3.1 Shear Mechanism and Proposed Equations from Previous Investigations	7
2.3.2 The Main Factors Affecting Shear Strength	10
2.4 MODES OF FAILURE	16

2.5 APPLICATIONS OF ARTIFICIAL INTELLIGENCE	12
2.5.1 Neural Networks (ANN)	13
2.5.2 Fuzzy Logic	13
2.5.3 Neuro-Fuzzy	13
2.5.4 Genetic Algorithm	13
2.5.5 Image Processing	14
2.6 NEURAL NETWORK LITERATURE REVIEW	14
2.6.1 Introduction to Neural Networks	14
2.6.2 History of Artificial Neural Networks	14
2.6.3 Biological Neural System	14
2.6.4 Neural Computation and Conventional Computation	16
2.6.5 Neural Networks	17
2.6.6 Neuron Model	18
2.6.7 Network Architectures	19
2.6.8 The learning Process	22
2.6.9 Training 23	
2.6.10 Limitations and Cautions	23
2.6.11 Neural Networks Applications	25
2.6.12 Advantages and Disadvantages	26
Chapter 3	
3 DATA DEFINITIONS	27
3.1 OBJECTIVE	27
3.2 METHODOLOGY	27
3.3 RANGE OF DATA	28
3 4 MODES OF FAILURE	31

Chapter 4	
4 ARTIFICIAL NEURAL NETWORK MODEL	43
4.1 INTRODUCTION	43
4.2 DEVELOPMENT OF ANN TO ESTIMATE SHEAR RESISTANCE	43
4.2.1 Input and Output Parameters Identification	44
4.2.2 Learning Algorithm	45
4.2.3 Transfer Functions	45
4.2.4 Network Performance	46
4.3 PREDICTION RESULTS BY MODULAR ANN	47
Chapter 5	
5 DESCRIPTION AND VERIFICATION	53
5.1 INTRODUCTION	53
5.2 PROGRAM INTERFACE	53
5.3 VERIFICATION EXAMPLE	57
5.4 PARAMETRIC STUDY	60
5.4.1 Influence of Effective Width (B)	60
5.4.2 Influence of Effective Depth (D)	60
5.4.3 Influence of Effective Length (L)	61
5.4.4 Influence of Longitudinal Steel Amount	62
5.4.5 Influence of Presence of Stirrups	63
5.4.6 Influence of Concrete Compressive Strength	64
5.4.7 Influence of Volume of Fraction (V _f)	65
5.4.8 Influence of Type of fibers, and Aspect ratio (L_f/D_f)	66
Chapter 6	
6 SUMMARY AND CONCLUSIONS	67

6.1 SUMMARY	67
6.2 CONCLUSIONS	67
6.3 RECOMMENDATIONS FOR FUTURE WORK	68
Appendix A	
PROGRAM CODE FOR ARTIFICIAL NEURAL NETWORK USING MATLAB GUIDE	69
REFERENCES	87

List of Tables

Table 2-1: Properties of Selected Fiber Types	6
Table 2-2: Summary of Proposed Shear Strength Equations for Fiber Rein Concrete Beams by Different Investigators	· ·
Table2-3: Comparison of Computing Approaches	17
Table 3-1: Description of the Author, Country, Year, Test Setup Type and the N of Tests for all Data Sets	
Table 3-2: Range of Variation for Inputs and Output Parameters	42
Table 3-3: Summary of Beam Details and Experimental Shear Strength Values	34
Table 5-1: Summary of Experimental Data and Results	57
Table 5-2: The Comparison between N.N Model and the Proposed Equations	58

List of Figures

Figure 2-1: Forces at Diagonal Crack of Reinforced Concrete Beam	8
Figure 2-2: Shear Failure in a Beam Reinforced with FRP without Reinforcement	
Figure 2-3: Typical FRP Shear Failures	12
Figure 2-4: Biological Neural System	16
Figure 2-5: Supervised Training Network.	17
Figure 2-6: Single Neuron with Bias	18
Figure 2-7: Neuron with Vector Input	19
Figure 2-8: Simple Neural Network Diagram	20
Figure 2-9: Detailed one-layer Network	25
Figure 2-10: Abbreviated one-layer Network	20
Figure 2-11: Multiple layer Network	21
Figure 2-12: Classification of Learning Algorithms	23
Figure 2-13: Simple Error Surface	24
Figure 2-14: Complex Error Surface	25
Figure 3-1: 2 Points Load Tests Set up	27
Figure 3-2: Single Load Tests Set up	27
Figure 3-3: Data of Beam.	31
Figure 3-4: Shape of Proper Shear Failure	32
Figure 3-5: Shape of Shear Compression Failure	32
Figure 3-6: Shape of Diagonal Tension Failure	32
Figure 3-7: Shape of Shear-Flexure Failure	33
Figure 3-8: Shape of Flexure Failure	33
Figure 3-9: Shape of Splitting Failure	33
Figure 4-1: Shape of NN1	43
Figure 4-2: Shape of NN2	44

Figure 4-3: Tan – Sigmoid Transfer Function.	46
Figure 4-4: Linear Transfer Function	46
Figure 4-5: Training Window for NN1	48
Figure 4-6: Performance for NN1	49
Figure 4-7: Training Window for NN2	50
Figure 4-8: Performance for NN2	51
Figure 4-9: Neural Network Training Regression for NN1	52
Figure 5-1: Welcome Screen	54
Figure 5-2: Inputs Window	54
Figure 5-3: Outputs Window	55
Figure 5-4: Relation between Shear Strength & Compressive Strength	55
Figure 5-5: Shapes of Fibers	56
Figure 5-6: The Comparison between the Experimental Results and N.N Results	58
Figure 5-7: Chart Illustrates the Comparison between N.N Model and the Pro-	
Figure 5-8: Relation between Width and Shear Strength	60
Figure 5-9: Relation between Depth and Shear Strength	61
Figure 5-10: Relation between Length and Shear Strength	62
Figure 5-11: Relation between (As) and Shear Strength	63
Figure 5-12: Relation between (Ast) and Shear Strength	64
Figure 5-13: Relation between (Fcu) and Shear Strength	65
Figure 5-14: Relation between (Vf%) and Shear Strength	66

Abstract

As a matter of fact, there are many parameters that have the influence on the shear strength in fiber reinforced concrete (FRC) and there is a lack of thorough understanding of the various force-resisting mechanisms acting in a beam prior to ultimate load. So, these factors lead to the complexity of analytical prediction of shear strength. In other words, it has been very difficult to create a general simple formula for predicting the shear strength of FRC beams. In addition to the absence of clear equations in the building codes that explain shear strength for FRC beams. Therefore; there has been a need to develop a numerical approach that can be used to predict shear behavior in fiber reinforced concrete (FRC).

The main objective of this research is to develop an artificial Neural Network that is able to predict shear strength and simplify its use through developing a Graphic User Interface (GUI). Moreover, shear behavior in fiber reinforced concrete beams (FRCBs) is quantified by compressive strength of concrete, longitudinal steel, size effect, fiber's type, content and aspect ratio.

The research methodology is based on collecting experimental results of technical investigations carried out so as to predict shear behavior in FRCBs. An artificial neural network aims at reducing the amount of computing time required in the numerous iterations involving structural analysis and experimental work. For this, two back-propagation neural networks have been experimented by MATLAB program; their types have been fitting (1st network) and pattern recognition (2nd network) which have been used to classify failure of FRC beams into 6 categories. Through simulation study, the optimum architectures for the individual NNs have been determined. The training algorithms use feed forward back propagation. The ANNs model has been assessed in comparison with exact values and deduces a good correlation with it.

Finally a software program is developed in order to be used as an evaluation system for resistance of FRC beams to shear forces, and also to expect the failure pattern in order to avoid its occurrence.

Chapter 1

1 INTRODUCTION

1.1 GENERAL

The major and primary industrial encouragement in using fibers at concrete structures is to reduce time and cost of construction. This trend appears especially in an era of high labor costs and possibly even labor shortages, since conventional stirrups require relatively high labor input to bend and fix in place.

Previous studies that have been carried out for structural applications of fiber reinforced concrete have included slender and deep beams with or without transverse reinforcement, ductile beam-column connections and flat-plate slabs subject to punching shear. Moreover, many reports which have been published over the past 25 years have confirming the effectiveness of fibers in reinforced concrete as shear reinforcement

Fibers are generally used to:

- Increase the shear capacity of concrete or to replace, in part, the vertical stirrups in RC structural members, a matter that will relieve reinforced congestion at critical sections such as beam-column junctions.
- Be easily placed in thin or irregular shaped sections, such as architectural panels, where it may be very difficult to place stirrups.
- In high strength concrete, which grows rapidly, fibers are attractive for longer spans and taller structures, as well as for earthquake resistant structures of any size where a reduction of mass is very important. Therefore, the application of high-strength concrete is hindered by its relative brittleness and lack of ductility. This drawback can be overcome by inclusion of fibers in high-strength concrete mix.

1.2 PROBLEM STATEMENT

Shear strength in fiber reinforced concrete beams (FRCBs) is affected by dimensions of beams, compressive strength of concrete, amount of longitudinal steel, stirrups existence, fiber's type, content, and aspect ratio in addition to physical factors as: aggregates interlock, dowel action...etc. These factors have created a difficulty in dealing with shear behavior and the estimation of shear capacity.

In the literature, each research has focused on certain parameters affecting shear behavior and derived an empirical equation for the estimation of shear strength.

So, to mitigate the hazards of structural failures due to shear forces and to reduce construction time and cost, the need of predictive system that can predict shear strength for fiber reinforced concrete beams and their expected modes of failure has been required.

1.3 OBJECTIVES

In order to realize previously mentioned aims and solve inherent problems, the main objectives of this research work have been specified as follows:

- Review the state of the art shear strength on reinforced concrete beams by the way of using both steel and synthetic fibers as shear reinforcement with and without stirrups.
- Review the state of the art types of fibers, benefits and problems.
- Review the literature of artificial neural networks and other computerized evaluation techniques so as to predict shear strength in fiber reinforced concrete beams
- Develop an Artificial Neural Network (ANN) to be able to predict and evaluate shear strength in fiber reinforced concrete beams in addition to their failure patterns. Furthermore; Shear strength in fiber reinforced concrete beams has relied on concrete compressive strength, beam size, longitudinal reinforcement, fiber type and content.
- Create Graphic User Interface (GUI) for the developed ANN that can simplify its use. The GUI along with the developed ANN constitutes a package that can be used in health monitoring of similar beams.
- Compare the effect of various factors on the shear strength.

1.4 OUTLINE of the THESIS

Chapter one includes a brief introduction to the thesis.

Chapter two includes the literature review of the research, also discussions on the usage of fibers in concrete structures, shear strength in fiber reinforced concrete beams and modes of failure are included, and also an overview of artificial neural networks (ANNs) has been included, too.

Chapter three introduces definitions for the work data and its limits.

Chapter four has dealt with the neural network model design including identification method for input parameters and the performance of model neural network architectures.

Chapter five includes GUI verification and explanation, display screens of the program, verification examples and parametric study.

Chapter six indicates a summary, conclusions and recommendations for possible future effort.

Appendix (A) includes a program code for artificial neural network using MATLAB Guide.

Chapter 2

2 LITERATURE REVIEW

2.1 OBJECTIVE

An overview on shear strength of fiber reinforced concrete beams and the factors that have an effect on them, modes of failure at FRC beams have been included in this chapter. In addition, artificial neural network has also been discussed.

2.2 FIBERS

2.2.1 Background of Fiber Reinforced Concrete (FRC)

According to (R. Brown) [1], "FRC is Portland cement concrete reinforced with more or less randomly distributed fibers. In FRC, thousands of small fibers are discrete and distributed randomly in the concrete while being mixed, and thus improve concrete properties in all directions. Fibers help to develop the post peak ductility performance, pre-crack tensile strength, fatigue strength, impact strength and eliminate temperature and shrinkage cracks."

Fibers made of steel, plastic, glass, and natural materials (such as wood cellulose) have existed in different shapes, sizes, and thicknesses; they have representative lengths of 6 mm to 150 mm (0.25 in. to 6 in.) and thicknesses ranging from 0.005 mm to 0.75 mm (0.0002 in. to 0.03 in.). Also, they may be of forms as round, flat, crimped, and deformed. They are added to concrete during mixing (CME302) [2]. The main factors that dominate the performance of the composite material are physical properties of fibers and matrix and strength of bond among them.

2.2.2 Types of Fibers

2.2.2.1 Steel Fibers

According to (ELsaigh) [3], "There are a number of different types of steel fibers with different commercial names. Basically, steel fibers can be categorized into four groups depending on the industrialized process as; cut wire (cold drawn), slit sheet, melt extract and mill cut."

They are short, discrete lengths of steel with an aspect ratio (ratio of length to diameter) from about 20 to 100 and with any of the numerous cross sections. Some steel fibers have hooked ends to improve resistance for a purpose of being pullout from a cement-based matrix (CME302) [2].

Also, (Nataraja) [4] said that Carbon steels are most commonly used to produce fibers, but fibers made from corrosion-resistant alloys are available. Stainless steel fibers have been used for high-temperature applications. Some fibers are collated into bundles using water-soluble glue to facilitate handling and mixing.

In general, SFRC is very ductile and particularly well suited for structures which are required to exhibit: