

FLEXURAL BEHAVIOUR OF REINFORCED CONCRETE INVERTED BEAMS STRENGTHENED USING FIBRE REINFORCED POLYMERS AND STEEL PLATES

By

Abdelrahman Medhat Kamal Abdallah

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
STRUCTURAL ENGINEERING

FLEXURAL BEHAVIOUR OF REINFORCED CONCRETE INVERTED BEAMS STRENGTHENED USING FIBRE REINFORCED POLYMERS AND STEEL PLATES

By

Abdelrahman Medhat Kamal Abdallah

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

STRUCTURAL ENGINEERING

Under the supervision of

Prof. Dr. Hatem Mostafa M.

Professor of Concrete Structures Structural Engineering Department Faculty of Engineering, Cairo University Dr. Ezzeldin Kamel M.

Researcher Construction Research Institue National Water Research Center

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2017

FLEXURAL BEHAVIOUR OF REINFORCED CONCRETE INVERTED BEAMS STRENGTHENED USING FIBRE REINFORCED POLYMERS AND STEEL PLATES

By Abdelrahman Medhat Kamal Abdallah

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in STRUCTURAL ENGINEERING

Approved by the Examining Committee

.....

Prof. Dr. Hatem Mostafa Mohamed (Thesis Main Advisor)
Professor of Concrete Structures
Faculty of Engineering, Cairo University

Prof. Dr. Mohamed Talaat Mostafa

Professor of Concrete Structures (Internal Examiner)
Faculty of Engineering, Cairo University

Prof. Dr. Tarek Ali El-Sayed

Professor of Concrete Materials Faculty of Engineering, Helwan University, External Examiner

> FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

Engineer's Name: Abdelrahman Medhat Kamal Abdallah

Date of Birth: 13/03/1991 **Nationality:** Egyptian

E-mail: abdelrahman kamal91@yahoo.com

Phone: 01003542686

Address: First settlement, New cairo, Cairo

Registration Date: 01/10/2014 **Awarding Date:** / / 2017

Degree: Master of Science **Department:** Structural Engineering

Supervisors:

Prof. Dr. Hatem Mostafa .M Dr. Ezzeldin Kamel M.

(Researcher, Construction Research Institue, National Water Research Center)

Examiners:

Prof. Dr. Tarek Ali El-Sayed (External Examiner)
(Professor of Concrete Materials, Faculty of Engineering, Helwan University)
Prof. Dr. Talaat Mostafa .M (Internal Examiner)
Prof. Dr. Hatem Mostafa .M (Thesis Advisor)

Thesis Title:

Flexural Behaviour of Reinforced Concrete Inverted Beams Strengthened Using Fibre Reinforced Polymers and Steel Plates

Key Words:

Fibre reinforced polymers – Externally bonded steel plates – Inverted beams – Experimental study –Near surface mounted

Summary:

The flexural behavior of reinforced concrete inverted beams strengthened in flexure was studied in the following thesis. A total of thirteen beams were experimentally tested in flexure. Twelve beams were strengthened in flexure using externally bonded CFRP sheets and steel plates. In addition near surface mounted CFRP strips were also used in strengthening of the inverted beams.

During the tests certain variables were put into consideration. The effectiveness of using different strengthening material such as FRP and steel was investigated. Also, the significance of strengthening an inverted beam at the edges of the web and flange rather than at the centre of the web was analyzed. In addition, the effect of using different bonding lengths covering the whole clear span and half the span was tested. Moreover, the effectiveness of steel bolts and U-anchorage system on the behavior of the strengthening material was also observed and studied.

During the tests the ultimate loads and failure modes of the strengthened beams were recorded and observed. Also, the strains in the main reinforcement and the strengthening material were recorded. In addition the load deflection curve was plotted and the ductility and rigidity of the beams were calculated and induced from the curve. Finally a list of conclusions and observations were identified and recorded at the end of following thesis.

Acknowledgements

The author would like to express his deepest gratitude to his supervisor Prof. Dr. Hatem Mostafa. In addition to his support and friendship over the past two years, he has provided the unwavering source of inspiration, determination, and leadership that was so essential for the successful execution of this research project.

The author would like to thank Dr Ezzeldin Kamel, for his constructive comments and encouragements throughout the research. The support provided by him is greatly acknowledged.

The author also expresses his thanks to Mr. Mohamed Ibrahim, Mr. Abdallah M. and Eng. Omar el Sawy for their valuable assistance during the fabrication and testing of the specimens.

Dedication

The love, patience and support of my parents, my wife and my son cannot be praised enough; to them this thesis is dedicated.

Table of Contents

ACKNOWLEDGEMENTS	l
DEDICATION	11
TABLE OF CONTENTS	111
LIST OF TABLES	v
LIST OF FIGURES	VI
NOMENCLATURE	ıx
ABSTRACT	xı
CHAPTER 1: INTRODUCTION	1
1.1 General	1
1.2 RESEARCH OBJECTIVE	2
1.3 RESEARCH APPROACH	3
1.4 OUTLINE OF THE THESIS	4
CHAPTER 2: LITERATURE REVIEW	5
2.1 Introduction	
2.2 HISTORICAL BACKGROUND	
2.3 STRENGTHENING OF CONCRETE BEAMS USING STEEL PLATES	
2.4 STRENGTHENING OF CONCRETE BEAMS USING FRP	
2.4.1 FRP Materials	
2.4.2 FRP Manufacturing Procedures	
2.4.3 FRP Test Methods	
2.4.4 Failure Mechanisms	
2.4.5 FRP Strengthening Techniques	
2.4.6 Durability	
2.4.7 Field Applications	36
CHAPTER 3 : EXPERIMENTAL PROGRAM	38
3.1 General	38
3.2 EXPERIMENTAL PROGRAM	38
3.2.1 Beam Specimens	38
3.2.2 Fabrication of Specimens	41
3.3 Materials	42
3.3.1 Concrete	42
3.3.2 Strengthening materials	43

3.4 Instrumentation	46
3.4.1 Strains Gauges:	46
3.4.2 Deflection:	47
3.5 STRENGTHENING PROCEDURES	47
3.5.1 Beams strengthened Using Steel Plates	47
3.5.2 Beams strengthened Using Carbon fibre sheets CFRP	51
3.5.3 Beam strengthened using CFRP laminate	
3.6 TESTING PLAN	
CHAPTER 4 : EXPERIMENTAL ANALYSIS	60
4.1 General	60
4.2 FAILURE MODES AND ULTIMATE LOADS	60
4.3 DUCTILITY AND DEFLECTION	64
4.4 THE EFFECT OF TESTED VARIABLES ON THE FLEXURAL BEHAVIOUR O	OF SPECIMENS 65
4.4.1 Influence of using different strengthening materials on flexura	ıl behaviour66
4.4.2 Influence of using different plates or sheets locations on flexu	ral behaviour 69
4.4.3 Influence of using a different bonding length on flexural beha	viour73
4.4.4 Influence of using a different bonding techniques on flexural l	oehaviour77
4.4.5 Influence of using near surface mounted (NSM) technique	82
CHAPTER 5: SUMMARY, CONCLUSIONS & RECOMMENDAT	TIONS FOR
FUTURE WORK	85
5.1 General	85
5.2 SUMMARY	85
5.3 CONCLUSIONS	85
5.4 RECOMMENDATIONS FOR FUTURE WORK	87
REFERENCES	88
APPENDIX (A): CALCULATIONS	96

List of Tables

Table 2. 1 Testing methods for Different FRP material system [33]	14
Table 2. 2 Specimen details tested by De Lorenzis and Nanni [62]	29
Table 2. 3 Test results recorded by Hassan et al. [64]	31
Table 2. 4 Summary of test results [66]	34
Table 3. 1 Specimen details	40
Table 3. 2 Concrete mix ingredients	42
Table 4. 1 Specimens experimental test results	61
Table 4. 2 Modulus of toughness, rigidity and deflection for each specimen	

List of Figures

Figure 1.1 Schematic representation of research approach	3
Figure 2. 1 Peeling failure modes as illustrated by Oehlers (1990) [16]	7
Figure 2. 2 Strengthening techniques used by Sabahattin et al. [18].	8
Figure 2. 3 Stress-strain relationship of FRP materials [23]	9
Figure 2. 4 Automatic lay-up process [32]	11
Figure 2. 5 Schematic representation of a hand lay-up process [32]	11
Figure 2. 6 Schematic representation of the pultrusion process [24]	11
Figure 2. 7 Pultrusion manufacturing process [24]	11
Figure 2. 8 ASTM D3039 tensile test [34]	12
Figure 2. 9 ASTM D3410 compression testing machine [36]	13
Figure 2. 10 ASTM D790-92 flexure test [38]	
Figure 2. 11 Failure modes for FRP systems as stated by Arudini et al. [39]	15
Figure 2. 12 Flexural failure modes of concrete structures strengthened with FRP [1]	.16
Figure 2. 13 Test setup by Jiangfeng et al [44]	17
Figure 2. 14 FRP shear strengthening patterns [10]	18
Figure 2. 15 Debonding failure modes as noted by Rizkalla et al. [1]	19
Figure 2. 16 Peeling failures as described by Oehler [16]	20
Figure 2. 17 Delamination of the concrete cover from the concrete beam [51]	21
Figure 2. 18 Differential shear crack opening displacements [51]	21
Figure 2. 19 Possible micro-crack locations [17]	21
Figure 2. 20 Anchorage system tested by Spadea et al. [55]	
Figure 2. 21 Detail of the U-anchor system tested by Khalifa et al. [57]	23
Figure 2. 22 Strengthening orientations for inverted T- beams implemented by	
Muhammad & Mohd [58]	24
Figure 2. 23 Test setup of Muhammed and Mohd [58]	25
Figure 2. 24 Load deflection curve of tested specimens [58]	25
Figure 2. 25 Failure mechanism of specimens [58]	26
Figure 2. 26 Concrete cover delamination starting at the end of sheet [95]	27
Figure 2. 27 Concrete cover delamination due to mid span flexure cracks [59]	27
Figure 2. 28 Typical tensile stress distribution around a NSM FRP bar [61]	29
Figure 2. 29 Test setup used by De Lorenzis and Nanni [62]	30
Figure 2. 30 Diagonal shear cracks leading to bonding failure [62]	30
Figure 2. 31 Splitting failure of epoxy cover [62]	31
Figure 2. 32 Preparing specimens by Hassan et al. [55]	32
Figure 2. 33 Splitting of the epoxy cover surrounding NSM bars [65]	
Figure 2. 34 Near surface mounted rod inside groove [66]	
Figure 2. 35 Hata bridge strengthening [83]	
Figure 3. 1 Beam concrete dimension and reinforcement details	39
Figure 3. 2 Beams fabrication process	42
Figure 3. 3 Compression test on cubes	
Figure 3. 4 Testing cubes	
Figure 3. 5 Strengthening materials used	45

Figure 3. 6 Attaching of strain gauges	46
Figure 3. 7 Installing of LVDT	47
Figure 3. 8 Strengthened beam (B2-S-F-M)48
)49
Figure 3. 10 Strengthened beams (B6-S-F-	E) and (B8-S-F-EE)49
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	S-F-M)50
`	<i>M</i>)51
•	M)52
•	E) and (B9-C-F-EE)53
	et al. [57]54
-	F-M)55
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	F-M) and (B12-EC-F-M)56
	specimens57
	57
•	58
	58
•	LVDT with data logger59
	loading rate59
	61
Figure 4. 2 Splitting cracks due to flexure of	eracks62
	in beams63
	63
Figure 4. 5 Flexure cracks induced from un	nder the web64
Figure 4. 6 Load deflection curves for bear	ns (B1-Control), (B2-S-F-M)66
Figure 4. 7 Debonding failure of beam (B2	-S-F-M)67
Figure 4. 8 CFRP rupture in beam (B3-C-F	(-M)67
Figure 4. 9 Load strain curve of the main re	einforcing steel in beams (B1-Control), (B2-
S-F-M) & (B3-C-F-M)	68
Figure 4. 10 Strain in the strengthening ma	terials in beam (B2-S-F-M)68
Figure 4. 11 De-bonding of CFRP sheets in	n beam (B9-C-F-EE)69
Figure 4. 12 De-bonding of steel plates in b	beam (B8-S-F-EE) on the edges of the flange
	70
Figure 4. 13 De-bonding of Steel plates on	the edges of the web in beam (B6-S-F-E).70
Figure 4. 14 De-bonding of CFRP sheets of	n edges of web in beam (B7-C-F-E)70
Figure 4. 15 Load deflection curves for bea	ams (B1-Control), (B3-C-F-M),71
Figure 4. 16 Load deflection curves for bea	ams (B1-Control), (B2-S-F-M), (B6-S-F-E)
& (B8-S-F-EE)	71
Figure 4. 17 Load strain curve of the main	reinforcing steel in beams (B1-Control), 39-C-F-EE)72
Figure 4. 18 Load strain curve of the main	
•	8-S-F-EE)73
	eam (B4-S-H-M)7
	am (B5-C-H-M)
	am (B3-C-n-M)
	ams (B1-Control), (B2-S-F-M)75
_	
rigure 4. 25 load straill curve of the strengt	thening CFRP sheets in beams76

Figure 4. 24 Load strain curve of the main reinforcing steel in beams (B1-Control),	
(B3-C-F-M) & (B5-C-H-M)	76
Figure 4. 25 Kahlifa et al (1999) U-anchorage system [57]	77
Figure 4. 26 Rupture of CFRP sheet in beam (B13-RC-F-M)	77
Figure 4. 27 Load deflection curves for beams (B1-Control), (B3-C-F-M)	78
Figure 4. 28 Strain in the strengthening materials in (B3-C-F-M)	78
Figure 4. 29 Delamination of concrete cover in beam (B10-SB-F-M)	79
Figure 4. 30 flexure cracks in beam (B10-SB-F-M) leading to delamination of plate7	79
Figure 4. 31 Counter force movement of bolts against steel plate	30
Figure 4. 32 Strain in the strengthening materials in beam (B2-S-F-M) &	80
Figure 4. 33 Load deflection curves for beams (B1-Control), (B2-S-F-M)	81
Figure 4. 34 Load strain curve of the main reinforcing steel in beams (B1-Control),	
(B2-S-F-M) & (B10-SB-F-M)	31
Figure 4. 35 Load deflection curves for beams (B1-Control), (B11-NC-F-M)	82
Figure 4. 36 Load strain curve of the main reinforcing steel in beams (B1-Control),	
(B11-NC-F-M) & (B12-EC-F-M)	83
Figure 4. 37 Strain in the strengthening materials in beams (B11-NC-F-M)	83
Figure 4. 38 Debonding of NSM CFRP laminate due to tensile stresses in the groove.	84
Figure 4. 39 Part of the FRP laminate was ruptured at the end in beam	34
Figure 4. 40 Flexural cracks causing rupture of laminate in beam	34
Figure 4. 39 Part of the FRP laminate was ruptured at the end in beam	84

Nomenclature

A =Cross-sectional area of a concrete section

 A_c = Area of concrete in compression

 A_f = Area of CFRP reinforcement

 A_s = Area of tension steel reinforcement

 $A_{s'}$ = Area of compression steel reinforcement

b =Width of concrete section

 b_f = Width of externally bonded FRP sheets/strips

 b_s = Width of externally bonded steel plates

c =Depth of the neutral axis from the extreme compression fibres

C =Clear cover of reinforcing bars

 $C_{s'}$ = Compression force in steel reinforcement

d =Depth from extreme compression fibre to the flexural reinforcement;

 d_f = Depth of near surface mounted CFRP strips from compression fibre

 E_c = Modulus of elasticity of concrete

 E_f = Modulus of elasticity of FRP reinforcement

 E_s = Modulus of elasticity of steel reinforcement

 f_{Bottom} = Concrete stress at bottom fibres

 f_c = Concrete stress in compression

 f_{cu} = Compressive strength of concrete after 28 days

 f_{FRP} = Maximum tensile stress in near surface mounted FRP bars

f_f= Stress in CFRP reinforcement

 f_s = Stress in tension steel reinforcement

 $f_{s'}$ = Stress in compression steel reinforcement

 f_y = Yield stress of steel reinforcement

 G_a = Shear modulus of the adhesive

h = Total height of a concrete section

L = Total span of the simply supported beam

 L_d = Development length of reinforcement

 L_e = Effective bond length

 M_u = Ultimate moment capacity of a concrete section

N = Normal force acting on the FRP at the two ends of a segment

n = number of FRP Layers

 P_U = Ultimate load

 P_{CR} = Load at initial crack

 T_f = Tensile force in CFRP reinforcement

 V_c = Shear force in the concrete at cutoff points due to interfacial shear stresses

 V_f = Shear force in the FRP sheets at cutoff points due to interfacial shear stresses

 V_u = Ultimate shear capacity of a beam

y = Distance from the FRP laminate to the section neutral axis

 β = An empirical constant, depends on the concrete compressive strength

 Δ cr = Deflection at cracking

- ΔU = Deflection at ultimate load
- ε = Concrete strain at the extreme compression fibre; interfacial strain of concrete
- κ m = Reduction factor for the tensile strain in externally bonded FRP reinforcement
- ε main steel = Maximum tensile strain of the main reinforcement at failure
- ε steel plate = Maximum tensile strain of the steel plate reinforcement at failure
- ε frp = Maximum tensile strain of the FRP reinforcement at failure
- $\rho =$ Reinforcement ratio of FRP
- ρ s= Reinforcement ratio of steel
- ϕ = Diameter of bolt or steel bar

Abstract

Strengthening and rehabilitation of concrete structures using externally bonded materials such as steel plates or FRP materials has been the concern of many researchers. Extensive research has been done in this field in order to fully understand the behaviour and the composite action of the concrete structure and the externally bonded material. In fact this strengthening technique has proven to be very effective in fortifying the rigidity and strength of the concrete element. However, most researches have been made on rectangular beams and T-beams; while the information regarding inverted T-beams is rather limited.

Inverted T-beams are found in many structures like residential, commercial buildings and bridges. Nevertheless, limited information regarding the strengthening and rehabilitation of inverted T-beams is available; this was the main concern of the following research. In the experimental program the main concern was to understand in depth the behaviour and performance of strengthened reinforced concrete inverted T-beams in flexure. Based on the research findings; a fundamental criterion was to be identified regarding the techniques implemented in strengthening of such beams. Externally bonded steel plates, externally bonded CFRP sheets and strips and near surface mounted CFRP strips; were used to strengthen the concrete beams

A total of thirteen reinforced concrete inverted T-beams were tested. Twelve beams were strengthened using different techniques. During the experimental tests, the method of bonding of the strengthening element to the concrete substrate, the efficiency of the strengthening material, its length and position were put to the test. Based on the test results the efficiency and applicability of each strengthening technique for each beam was identified.