

127, 17 27, 17 (20) 77, 17 (20

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Information Netw. " Shams Children Sha شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص

DEVELOPMENT AND IN-VITRO EVALUATION OF SOME COLON-SPECIFIC DRUG DELIVERY SYSTEMS

A Thesis presented by

Ahmed Fathy A. H. Hanafy

Bachelor of Pharmaceutical Sciences

In Partial Fulfillment of the Requirements for the Degree of

Master of Pharmaceutical Sciences

(Industrial Pharmacy)

Under the supervision of

Prof. Dr.

Mohamed Adel A. El-Egaky

Professor of Industrial Pharmacy

Alexandria University

Prof. Du

Sana A.M. Mortada

Professor of Industrial
Pharmacy
Head of Industrial Pharmacy
Department, Alexandria
University

Prof. Du

Ahmed H. Hikal

Professor of Pharmaceutics

General Manager of
Research and Development
Directorate,
Amriya Pharmaceutical
Industries

FACULTY OF PHARMACY
UNIVERSITY OF ALEXANDRIA

2005

DEDICATED

T. C

My parents, My Wife, & My Sister.

ACKNOWLEDGEMENT

A special debt of gratitude and deep thanks are gladly acknowledged to *Professor Soctor* Sana A. M. Mortada, Professor of Industrial pharmacy, and head of Industrial pharmacy department, Alexandria University for her instructive supervision, indispensable help and laborious efforts throughout the course of preparation of this work.

I wish to express my sincere thanks, deep gratitude and appreciation to *Professor Doctor* Ahmed H. Hikal, Professor of pharmaceutics, General Manager of Research and Development, Amriya Pharmaceutical Industries, for his supervision, sincere guidance, willing assistance unforgettable support and encouragement.

I also wish to extend my respectful appreciation, cordial thanks and infinite gratitude to **Prof. Dr. Mohamed Adel A. El-Egaky** Professor of Industrial Pharmacy, Alexandria University for his supervision, continuous service and kind help throughout the work.

My cordial thanks are acknowledged to *Professor Doctor* **Abdulla M. Molokhia**, Professor of pharmaceutics, and chairman of the Boards European Egyptian Pharm Ind. for support, and encouragement.

My deep thanks and infinite gratitude to Pharmacist/ Hala

Nada, Pharmacist/ Salwa Gamil, Pharmacist/ Ola Kamel and

Chem. Mahmoud Hussein for their support and help.

CONTENTS

Introduction	1-36
1. Terminology of drug targeting	2
2 . Targeted drug delivery systems	3
2.1 . Prodrugs	3
2.1.1. Vitamin conjugates (the folate pro-drug approach)	4
2.2 . Drug-Carrier	4
2.2.1 . Particulate drug delivery systems	6
2.2.2 . Soluble macroinolecular drug delivery system	14
2.3 . Targeting in the gastrointestinal tract	19
3. Approaches in the design of colon-specific drug delivery	21
3.1 . Physiology of the colon	21
3.2 . Pathological processes in the colon	22
3.3 . Colon-specific drug delivery systems	24
3.3.1. pH-controlled drug release	25
3.3.2. Enzymatic controlled drug release	27
3.3.3. Time-controlled drug release	29
3.3.4. Pressure-controlled Drug Release	31
3.4. Evaluation of Colon-targeted drug delivery systems	32
4. Drugs and conditions requiring colon targeted drug delivery	32
system	
4.1 . Drugs used for treating colon pathological conditions	33
4.1.1 . Corticosteroids	33
4.1.2 . Immunosuppressants	33
4.1.3 . Salicylates	34
Aim of the work	37

Part 1	39-92	
Colon-targeting of Mesalazine by coating with innovative co	llulos	
acetate pseudolatex		
1-Introduction	40	
2- Experimental	45	
2.1- Material	46	
2.2- Instruments	46	
2.3- Preparation of mesalazine core tablets	47	
2.3.1- General preparation procedure	48	
2.3.2- Evaluation of core tablets	48	
2.4- Pseudolatex preparation	50	
2.4.1- General procedure for pseudolatex preparation	51	
2.4.2- Variables affecting pseudolatex preparation	51	
2.4.3. Pseudolatex evaluation	53	
2.5- Tablet coating	54	
2.5.1- Coating procedure	54	
2.5.2- Coating variables	54	
2.5.3- Dissolution of coated mesalazine tablets	55	
3- Results and Discussion	56	
3.1- Preparation of Pseudolatex	56	
3.2- Coating procedure	59	
3.3- Release of mesalazine core tablets	67	
3.4- Effect of coating ingredients on spectrophotometric	.73	
readings of mesalazine		
3.5- Mesalazine release from asymmetric membrane of CA	73	
pseudolatex coated tablets	÷	
3.5.1- Effect of plasticizer concentration	75	

3.2- Different variables affecting drug release	113
3.2.1- Effect of HPMC concentration	115
3.2.2- Effect of using carbomer instead of HPMC	117
3.2.3- Effect of hydrogenated castor oil concentration	119
3.2.4- Effect of using stearic acid instead of HCO	121
3.2.5- Comparison between release behaviors of self prepared	123
eroding matrix tablets and one marketed formulation	
4- Conclusion	125
5- Summary	126
Part 3	128-181
Stability and comparative urinary excretion study of diff	erent
mesalazine colon targeted tablet dosage forms	
1-Introduction	129
2 – Experimental	135
2.1- Materials	135
2.2- Instruments	135
2.4 - Stability study protocol	135
2.5- Effect of addition of antioxidant in core tablet on	135
mesalazine stability of CA coated tablets	
2.6- Physical and chemical stability	138
2.7 - Comparative urinary excretion study protocol	140
3- Results and Discussion	142
3.1- stability study for mesalazine tablet formulations coated	142
with cellulose acetate pseudolatex AM	
3.2- Stability study for eroding mesalazine matrix tablet	165
formulae	i
3.3- Comparative urinary excretion study	171
·	

INTRODUCTION

INTRODUCTION

1. Terminology of drug targeting

The idea of drug targeting to a specific site in the body was first introduced almost a century ago. In recent years this field has emerged as an important area of research. This long delay was attributed to the inadequate understanding of various diseases; the lack of a detailed description, at the cellular-molecular level, of how drugs are processed; and the difficulties in identifying and producing carrier molecules specific to the targeted organs, cells, or tissues. Most drug therapies currently available provide little, if any, target specificity (1).

A target-oriented drug delivery system must supply drug selectively to its site(s) of action(s) in a manner that provides maximum therapeutic activity through controlled and predetermined drug-release kinetics. It should prevent degradation or inactivation during transit to the target sites, and protect the body from adverse reactions because of inappropriate disposition. Requirements for target-oriented drug delivery also include that the delivery system should be biochemically inert, nonimmunogenic, and physically and chemically stable in vivo and in vitro. The carrier must be biodegradable, or readily eliminated without any problem; and the preparation of the delivery system must be reproducible, cost-effective and reasonably simple (1).

Drug targeting has been classified into three types:

- A- First-order targeting: describes delivery to a discrete organ or tissue.
- B- Second-order targeting: represents targeting to a specific cell type(s) within a tissue or organ (tumor cells).
- C- Third order targeting: implies delivery to a specific intracellular compartment in the target cells (e.g., lysosomes cells).

Basically, there are three approaches for drug targeting. The first approach (magic bullet approach of Ehrlich) involves the use of biologically active agents that are both potent and selective to a particular site in the body. The second approach (prodrug approach) involves the preparation of pharmacologically inert forms of active drugs that when they reach the active sites become activated by a chemical or enzymatic reaction. The third approach (magic gun or missile approach) utilizes a biologically inert macromolecular carrier system that directs a drug to a specific site in the body where it is accumulated and affects its response.

Regardless of the approach, the therapeutic efficacy of targeted drug delivery systems depends on the timely availability of the drug in active form at the target site(s) and its intrinsic pharmacological activity. The intrinsic pharmacokinetic properties of the free drug should be the same, irrespective of whether or not it is introduced into the body attached to a carrier (2).

There are several factors that determine the availability of drug at the target site. These include the rates of input of targeted drug into the body plasma, distribution of targeted drug to the active site, release of active drug from the formulation at the site of action, removal (elimination) of targeted drug from the target site, diffusion or transport of targeted drug and free drug from the active site to nontarget sites, and blood and lymph flow to and from the target site (3).

2. Targeted drug delivery systems

2.1. Prodrugs

A prodrug is pharmacologically inert form of an active drug that must undergo transformation to the parent compound in vivo by either a chemical or an enzymatic reaction to exert its therapeutic effects. Prodrugs are designed to alter the absorption, distribution, and