Serum insulin like Growth Factor-I and Growth Hormone Levels in Children with Congenital Heart Disease, Relationship with Nutritional Status, Cyanosis and Left Vent Functions

Thesis

Submitted for the Partial Fullfilment of Master Degree in Pediatrics

${f By}$ Dalia Yehia Abd El-Fatah

M.B.B.CH, 2004

Under Supervision of

Prof. Dr. Karima Ahmed Abd El- Khalek

Professor of Pediatrics Faculty of Medicine, Ain Shams University

Dr. Omneya Ibrahim Youssef

Lecturer of Pediatrics
Faculty of Medicine, Ain Shams University

Dr. Mahira Ismail El-Mogy

Lecturer of Clinical and Chemical Pathology Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2011

List of Contents

Title	Page No.
List of Tables	<i>i</i>
List of Figures	iii
List of Abbreviations	<i>v</i>
Introduction	1
Aim of the Work	3
Review of Literature	4
Subjects and Methods	91
Results	102
Discussion	
Summary and Conclusion	
Recommendations	
References	188
Arabic Summary	

List of Tables

Table No	o. Title I	Page No.
Table (1):	The relative frequency of major congenital helesions	
Table (2):	GH release modulated by neurotransmit systems	
Table (3):	Age (year) distribution of studied groups	103
Table (4):	Body Weight (kg) distribution of studied groups:	105
Table (5):	Height (cm) distribution of studied groups	106
Table (6):	BMI (kg/m²) distribution of studied groups	107
Table (7):	Comparison between studied groups regards serum IGF-1 levels (ng/ml):	_
Table (8):	Comparison between studied groups regardi serum GH levels (ng/ml):	
Table (9):	P wave amplitude distribution of studied groups	112
Table (10):	P wave duration distribution of studied groups	113
Table (11):	PR interval distribution of studied groups	114
Table (12):	QRS duration distribution of studied groups	116
Table (13):	QTc distribution of studied groups	117
Table (14): \$	ST segment duration distribution of studied groups.	118
Table (15): 7	Γ wave duration distribution of studied groups	119
Table (16):	T wave amplitude of studied groups	120
Table (17):	AO diameter (mm) distribution of studied group	os122
Table (18):	LA diameter (mm) distribution of studied group	os123
Table (19):	SWT (mm) distribution of studied groups	125
Table (20):	PWT (mm) distribution of studied groups	126
Table (21):	LVEDd (mm) distribution of studied groups	127
Table (22):	LVESd (mm) distribution of studied groups	128
Table (23):	EF (%) distribution of studied groups	130
Table (24):	FS (%) distribution of studied groups	131
Table (25):	RVESP(mmHg) distribution of studied groups	133

Table (26):	Comparison between studied groups regarding A wave	135
Table (27):	Comparison between studied groups regarding E wave	136
Table (28):	Comparison between studied groups regarding E/A ratio	137
Table (29):	DT distribution of studied groups	139
Table (30):	IVRT distribution of studied groups	140
Table (31):	RV mass index values distribution of studied groups	142
Table (32):	LV mass index values distribution of studied	
	groups	143
	LV Tei index distribution of studied groups	
Table (34):	RV Tei index distribution of studied groups	146
Table (35):	Comparison between studied groups regarding $S_{\rm m}$ wave	148
Table (36):	Comparison between studied groups regarding E _m value	149
Table (37):	Comparison between studied groups regarding A_{m} value	150
Table (38):	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	152
Table (39):	Comparison between studied groups regarding E/E _m	153
Table (40):	Correlation between IGF-1, GH levels and demographic data of studied groups	155
Table (41):	Correlation between IGF-1, GH levels and ECG data of studied groups	157
Table (42):	Correlation between IGF-1, GH levels and ECHO data of studied groups	159
Table (43):	Correlation between IGF-1, GH and ECHO diastolic functions data of studied groups	161
Table (44):	Correlation between IGF-1, GH and Ventricular mass index data of studied groups	163
Table (45):	Correlation between IGF-1, GH and TDI data of studied groups	165

List of Figures (for Review)

Figure N	o. Title	
Page No.		
Fig. (1):	Structure of a normal human heart4	
Fig. (2):	CVS embryology5	
Fig. (3):	Ventricular septal defect	
Fig. (4):	A postro-anterior chest x-ray demonstrating cardiomegaly with convex pulmonary outflow tract and increased the pulmonary arterial markings in a child with VSD	
Fig. (5):	Atrial septal defect	
Fig. (6):	Atrioventricular canal defect	
Fig. (7):	Patent ductus arteriosus	
Fig. (8):	Tetralogy of Fallot (TOF)28	
Fig. (9):	Transposition of the Great Arteries (TGA)30	
Fig. (10):	Measuring infant length65	
Fig. (11):	Measuring height in children and adolescents65	
Fig. (12):	Insulin Like Growth Factor–172	
Fig. (13):	The IGF-1R structure74	
Fig. (14):	A Schematic depiction of the GH/ IGF-1 axis75	
Fig. (15):	Schema for measurements of Doppler time intervals99	

List of Figures (for Results)

Figure N	o. Title	
Page No.		
Figure (16):	Age distribution of studied groups	104
Figure (17):	Weight, height, BMI distribution of studied groups	108
Figure (18):	IFG-1 and GH distribution of studied	111
Figure (19):	P wave amplitude, P wave duration and PR interval distribution of studied groups	115
Figure (20):	QRS duration, QTc, ST segment duration, T wave duration, T wave amplitude distribution of studied groups	121
Figure (21):	AO diameter and LA diameter distribution of studied groups	124
Figure (22):	SWT, PWT, LVEDd and LVESd distribution of studied groups	129
Figure (23):	EF (%) and FS (%) distribution of studied groups	132
Figure (24):	RVESP distribution of studied groups	134
Figure (25):	A wave, E wave and E/A ratio distribution of studied groups.	138
Figure (26):	DT and IVRT distribution of studied groups	141
Figure (27):	RVMI and LVMI distribution of studied groups.	144
Figure (28):	LV Tei index and RV Tei index distribution of studied groups.	147
Figure (29):	S wave, E_m wave and A_m wave distribution of studied groups.	151
Figure (30):	E_m/A_m and E/E_m distribution of studied groups	154

List of Abbreviations

ACEI : Angiotension converting enzyme inhibitor

A_m wave : Late diastolic mitral annular velocity

AO : Aorta

A wave : Late diastolioc waveASD : Atrial septal defectAV : Atrio-ventricular valve

AV : Atrio-ventriculo

AVSD : Atrio-ventricular septal defect
AVVR : Atrio-ventricular venous return

Awave : Early diastolic
BMI : Body Mass Index

CAHD : Congenital acyanotic heart diseaseCCHD : Congenital cyanotic heart disease

CHDs : Congenital heart diseasesCHF : Congestive heart failureDHEA : Dehydroepiandrosterone

DT : Deceleration time

D-TGA : Dextro-transposition of great arteries

EF : Ejection fraction

E_m wave : Early diastolic mitral annular velocity

E wave : Early diastolic wave FS : Fractional shortening

GHD : Growth hormone deficiency

GH-RH : Growth hormone-releasing hormone

HGH : Human growth hormoneIGF-1 : Insulin-like growth factor-1

IGF-1R : Insulin-like growth factor-1 receptorIGF-BPs : Insulin-like growth factor binding protein

IQ : Intelligence quotient

IVCT : Isovolumetric contraction time
 IVRT : Iso volumetric relaxation time
 L-TGA : Left- transposition of great arteries

LV : Left ventricular

LVEDd : Left ventricular end diastolic diameterLVESd : Left ventricular end systolic diameter

LVMI : Left ventricular mass index

LVMPI : Left ventricular myocardial performance index

MPI : Myocardial performance index

MR : Mitral regurge

MRI : Magnetic resonance imaging

PDA : Patent ducts arteriosus
PS : Pulmonary stenosis

PVR : Pulmonary vascular resistance

PWT : Posterior wall thickness

rhGH : Recombinant human growth hormone

RV : Right ventricle

RVMI : Right ventricular mass index

SD : Standard deviation

 S_m wave : Peak systolic mitral annular velocity

SVR : Systemic vascular resistance

SWT : Septal wall thickness

TDI : Tissue Doppler imaging

TGA : Transposition of great arteries

TOF : Tetralogy of Fallot

VSD : Ventricular septal defect

Acknowledgement

First and foremost, I feel always indebted to **Allah**, the most kind and the most merciful.

Words do fail me when I come to express my sincere indebtedness and profound gratitude to my Prof. Dr. Karima Ahmed Abd El- Khalek, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, who guided this work and helped whenever I was in need. Her great patience, close supervision, and constant encouragement throughout this work are beyond my words of thanks.

Special thanks are due to **Dr.** Omneya Ibrahim Youssef, Lecturer of Pediatrics, Faculty of Medicine, Ain Shams University, for dedicating so much of her precious time and effort to complete this work.

All thanks are due to **Dr. Mahira Ismail El-Mogy,** Lecturer of Clinical and Chemical
Pathology, Faculty of Medicine, Ain Shams
University, for helping and supporting me all the time.

Introduction

Congenital heart diseases refers to any anatomic defect in the heart and major blood vessels that is present at birth (*Smith*, 2001).

Cardiac abnormalities occur with an incidence of 0.8 per 1000 live birth and represent 25% of all congenital malformations (*Nemer et al.*, 2006). Congenital cardiovascular malformations (CCVM) present any society with an enormous burden of grief and expense; about eight percent of all deaths during the first year of life are due to CCVM and account for a third or more of infants deaths due to birth defects, more than that for any other congenital anomaly (*Bailey and Berry*, 2005).

Failure to thrive and protein- energy malnutrition are well-recognized complications of Congenital heart diseases (CHDs) (*Soliman et al.*, 2001).

They are related to repeated respiratory infections, increased Oxygen consumption rate and changes induced by chronic hypoxia (*Soliman et al.*, 2001). Hypoxia causes feeding difficulties, insufficient caloric intake, intestinal anoxia and venous congestion (*Soliman et al.*, 2001), which causes hypermetabolism, reduction in nutrient ingestion, intestinal malabsorption of nutrient and malnutrition (*Varan*, 1999).

Insulin- like growth factors (IGF) are growth hormones related peptides that play a major role in anabolic and mitogenic activities (*Soliman*, 2000). The combination of decreased IGF-1

level and increased basal GH levels is associated with malnutrition and hypermetabolic states (*Bentham*, 1993).

IGF are pronounced to have also effects in the pathogenesis of failure to thrive seen in CHD (*Soliman et al.*, 2001).

At present, there is a growing body of evidence implicating growth hormone (GH) and/or insulin-like growth factor-1 (IGF-1) in the intricate cascade of events connected with the regulation of heart development and hypertrophy (*Lombardi*, 1997).

Aim of the Work

The aim of this work is to evaluate serum insulin- like growth factor IGF-1 and GH levels in children with Congenital heart diseases (CHDs) and to determine their relationship with nutritional status and left ventricular global function in these patients.

Congenital Heart Diseases (CHDS)

Definition:

Congenital heart diseases (CHDs) refer to any abnormality in cardiocirculatory structure or function that is present at birth even if it is discovered later (*Park*, 2008).

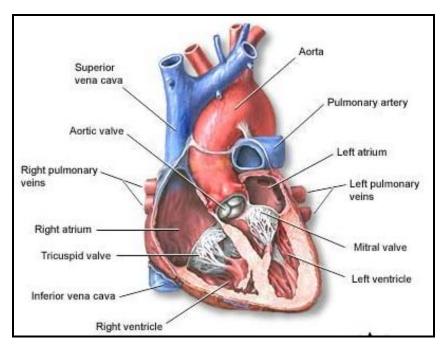


Fig. (1): Structure of a normal human heart (Park, 2008).

The embryology of congenital heart disease:

The embryological development of the heart is an awesome and complex process that occurs between third and ninth weeks of gestation (*Suddaby*, 1999).

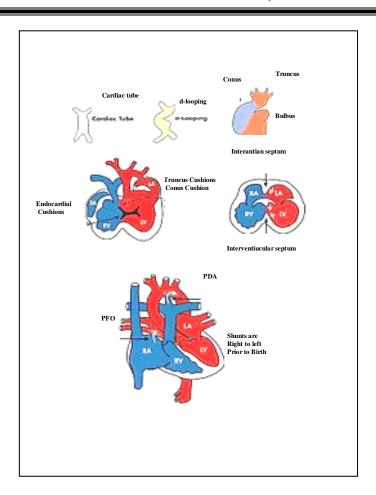


Fig.(2): CVS embryology (Heiden, 2010).

The heart begins as a single tube that septates into two tubes and begins to twist rightward onto itself, called "d" looping. This tube will form an "S" shaped structure that will eventually form all the structure of the heart and begin pumping blood by the fourth week of life. The superior (top) portion of the tube will start to balloon out and will begin to form the atria. Meanwhile, the inferior (bottom) portion of the tube will balloon out and begin to form the ventricles .The middle portion of this tube will