QUALITY EVALUATION OF BISCUIT SUPPLEMENTED WITH HIGH PROTEIN-FIBER SOURCES

By

Mohamed Abd-Elnaby Abo-Elmakarem Ragheb

B.Sc. Agric. Sc. (Food Science and Technology), Ain shams Univ., 2009

A thesis submitted in partial fulfillment Of the requirements for the degree of

MASTER OF SCIENCE in Agricultural Sciences (Food Science and Technology)

> Department of Food Science Faculty of Agriculture Ain Shams University

Approval Sheet

QUALITY EVALUATION OF BISCUIT SUPPLEMENTED WITH HIGH PROTEIN-FIBER SOURCES

By

Mohamed Abd-Elnaby Abo-Elmakarem Ragheb

B.Sc. Agric. Sc. (Food Science and Technology), Ain shams Univ., 2009

This thesis for M.Sc degree has been approved by:		
Dr. Attia A. E. Yaseen Research Prof. Emeritus of Food Science and Technology, National Research Center		
Dr. Magda H. M. Allam Prof. Emeritus of Food Science and Technology, Faculty of Agriculture, Ain Shams University		
Dr. Yasser F. M. Kishk Prof. of Food Science and Technology, Faculty of Agriculture, Ain Shams University		
Dr. El-Sayed I. Y. Abou El-Seoud Prof. Emeritus of Food Science and Technology, Faculty of Agriculture, Ain Shams University		
Date Examination: / / 2016		

QUALITY EVALUATION OF BISCUIT SUPPLEMENTED WITH HIGH PROTEIN-FIBER SOURCES

By

Mohamed Abd-Elnaby Abo-Elmakarem Ragheb

B.Sc. Agric. Sc. (Food Science and Technology), Ain shams Univ., 2009

Under the supervision of:

Dr. El-Sayed Ibrahim Yousif Abou El-Seoud

Prof. Emeritus of Food Science and Technology, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Yasser Fikry Mohamed Kishk

Prof. of Food Science and Technology, Faculty of Agriculture, Ain Shams University

Dr. Hemat Elsheshetawy Ali

Prof. of Food Science and Technology, Faculty of Agriculture, Ain Shams University

ABSTRACT

Mohamed Abd-Elnaby Abo-Elmakarem Ragheb: Quality Evaluation of Biscuit Supplemented with High Protein – Fiber Sources. Unpublished Master of Science Dissertation, Department of Food Science, Faculty of Agriculture, Ain Shams University, 2017

The possibilities of replacing wheat flour in its products and to develop food items based on the by-product of wheat or rice milling industry were investigated. Meals and protein concentrates were prepared from wheat germ and rice bran. Chemical composition and amino acid profiles indicated that wheat germ and rice bran protein products can be considered as good plant protein supplements in biscuits. The function properties include, water and oil binding capacities, emulsifying activity and stability, as well as, foaming characteristics of wheat germ and rice bran protein products were studied. Selected function properties are essential for incorporation of such proteins in biscuits. Plant protein prepared from wheat germ and rice bran were used to study their influence on rheological characteristics of wheat flour dough and biscuit making quality. Biscuits containing wheat germ or rice bran protein products were equal or superior to control biscuits in their chemical composition, amino acids and nutritional value, physical and sensory characteristics. Therefore, the purpose of this research was to find the potential use of by-products of wheat and rice milling industry in the rheological characteristics of wheat flour dough and the quality of biscuits.

Key Words: Wheat flour, Wheat germ, Rice bran, Biscuits, Wheat germ protein concentrate, Rice bran protein concentrate, Functional characteristics, Nutritional value, Amino acids, Sensory evaluation.

ACKNOWLEDGEMENT

I would like to express my deepest thanks to Allah, who has created us, helped us and the most beneficent and merciful and reconciling me.

My heart-full thanks and gratefulness to **Prof. Dr. El-Sayed I. Y. Abou Elseoud,** Professor Emeritus of Food Science and Technology,
Food Science Department, Faculty of Agriculture, Ain Shams University,
for his supervision, sincere criticism, constructive ideas and kind
encouragement for me during this investigation.

Deepest and sincere gratitude and appreciation to **Prof. Dr. Yasser F.M. Kishk**, Professor of Food Science and Technology, Food Science Department, Faculty of Agriculture, Ain Shams University for his supervision, great helps during this work, valuable guidance and preparation of this manuscript.

Thanks and appreciation to **Prof. Dr. Hemat E. Elsheshetawy**, Professor of Food Science and Technology, Food Science Department, Faculty of Agriculture, Ain Shams University, for valuable advice, great helps, continuous support in courses and preparation of the manuscript.

My appreciation is extending to **Dr. Mohamed G. E. Gadallah,** Associate Professor of Food Science and Technology, Food Science Department, Faculty of Agriculture, Ain Shams University, for valuable guidance and planning of this investigation from 2011 to 2013.

My heart full thanks and sincere appreciation and preying to **my parents** for their helpful support and encouragement. Sincere gratitude is expressed to **my wife** for her willing help.

Special thanks to **Department of Food Science staff** for their continuous support and every possible help kindly offered during this investigation.

CONTENTS

	Page
LIST OF TABLES	VI
LIST OF FIGURES	IX
LIST OF ABBREVIATION	X
1. INTODUCTION	1
2. REVIEW OF LITERATURE	4
2.1. Protein and fiber importance in our diet	4
2.2. Fiber rich by-products	6
2.3. Proximate analysis	8
2.3.1. Wheat flour	8
2.3.2. Rice bran	10
2.3.3. Wheat germ	11
2.4. Defatting and extraction of protein concentrate	13
2.4.1. Rice bran	13
2.4.2. Wheat germ	15
2.5. Functional properties	15
2.6. Rheological characteristics of dough	16
2.7. Biscuits manufacturing	19
2.7.1. Proximate composition of biscuits	20
2.7.2. Physical properties of biscuits	22
2.7.3. Sensory attributes of biscuits	24
1. MATERIAL AND METHODS	
3.1. Materials	28
3.1.1. Wheat flour	28
3.1.2. Wheat germ	28

3.1.3. Rice bran	28
3.1.4. Sugar, salt, sodium bicarbonate, ammonium bicarbonate, shortening and vanilla	28
3.2. Methods	28
3.2.1. Preparation of defatted wheat germ (DWG) and defatted rice bran (DRB)	28
3.2.2. Preparation of wheat germ protein concentrate (WGPC)	29
and rice bran protein concentrate (RBPC)	
3.2.3. Preparation of biscuits	29
3.2.4. Proximate analysis	29
3.2.5. Amino acid determination	30
3.2.6. Rheological properties of dough	31
3.2.6.1. Farinograph characteristics	31
3.2.6.2. Extensograph characteristics	31
3.2.7. Functional properties	32
3.2.7.1. Water and oil binding capacity (WBC and OBC)	32
3.2.7.2. Determination of emulsion activity (EA) and emulsion stability (ES)	32
3.2.7.3. Foaming capacity (FC) and foaming stability (FS)	33
3.2.8. Evaluation of biscuit samples	33
3.2.8.1 Physical characteristics	33
3.2.8.2 Texture analysis	33
3.2.8.3 Organoleptic characteristics	34
3.2.9. Statistical analysis	34
2. RESULTS AND DISCUSSION	
4.1. Proximate composition	35
4.1.1. Proximate analysis of wheat flour (WF) and wheat germ protein products	35

4.1.2. Proximate analysis of wheat flour (WF) and rice bran protein	37
products	
4.2. Amino acid composition and protein quality	39
4.2.1. Amino acid and protein quality of wheat flour (WF), wheat	39
germ (WG) and rice bran (RB) protein products	
4.2.1.1. Amino acid composition	39
4.2.1.2. Protein quality	40
4.2.2. Amino acid composition of WF supplemented with different	42
levels of DWG or WGPC (g/100g protein)	
4.2.3. Amino acid composition of WF supplemented with different	45
levels of DRB or RBPC (g/100g protein)	
4.3. Functional properties of wheat germ and rice bran protein	48
products	
4.3.1. Emulsification activity (EA) and emulsion stability (ES)	48
4.3.1.1. Emulsification activity (EA) and emulsion stability (ES) of	48
wheat germ protein products	
4.3.1.2. Emulsification activity (EA) and emulsion stability (ES) of	49
rice bran protein products	
4.3.2. Water and oil binding capacities	55
4.3.2.1. Water, oil binding capacity (WBC, OBC) and water-oil	55
binding index (WOBI) of WF and WG protein products	
4.3.2.2. Water, oil binding capacity (WBC, OBC) and water-oil	57
binding index (WOBI) of WF and RB protein products	
4.3.3. Foaming capacity (FC) and stability (FS)	59
4.3.3.1. Foaming capacity (FC) and stability (FS) of WF and WG	59
protein products	
4.3.3.2. Foaming capacity (FC) and stability (FS) of WF and RB	61
protein products	
4.4. Rheological properties	63
4.4.1. Farinograph parameters	63

5.1. Proximate chemical composition	89
5. SUMMARY AND CONCLUSION	89
products	
4.8.2. Sensory evaluation of biscuits supplemented with RB protein	86
products	
4.8.1. Sensory evaluation of biscuits supplemented with WG protein	85
4.8. Sensory evaluation of biscuits samples	85
4.7.2. Texture profile of biscuits supplemented with RB protein products	84
products	
4.7.1. Texture profile of biscuits supplemented with WG protein	83
4.7. Texture profile of biscuit samples	83
4.6.2. Physical characteristics of biscuits supplemented with RB protein products	81
4.6.1. Physical characteristics of biscuits supplemented with WG protein products	80
4.6. Physical characteristics of biscuit samples	
bran protein products 4.6. Physical characteristics of bisavit comples	80
4.5.2. Proximate analysis of biscuit samples supplemented with rice	77
wheat germ protein products	70
4.5.1. Proximate analysis of biscuit samples supplemented with	76
4.5. Proximate analysis of biscuit samples	76
4.4.2.2. Extensograph parameters of dough behavior of WF and its blends with rice bran protein products	73
blends with wheat germ protein products	70
4.4.2.1. Extensograph parameters of dough behavior of WF and its	70
4.4.2. Extensograph parameters	70
blends with rice bran protein products	
4.4.1.2. Farinograph parameters of dough behavior of WF and its	67
blends with wheat germ protein products	
4.4.1.1. Farinograph parameters of dough behavior of WF and its	63

5.2. Amino acid composition and protein quality	90
5.3. Functional properties	91
5.3.1. Emulsification activity (EA) and emulsion stability (ES)	91
5.3.2. Water and oil binding capacities	92
5.3.3. Foaming capacity (FC) and stability (FS)	92
5.4. Physical characteristics of biscuit samples	92
5.4.1. Farinograph parameters	92
5.4.2. Extensograph parameters	94
5.5. Proximate analysis of biscuit samples	94
5.6. Physical characteristics of biscuit samples	95
5.7. Texture profile	95
5.8. Sensory evaluation of biscuit samples	96
REFERENCES	97
ARABIC SUMMARY	

LIST OF TABLES

No.	Title	Page
1	Proximate analysis of wheat flour and wheat germ	36
	protein products (% on dry weight basis).	•
2	Proximate analysis of wheat flour and rice bran protein products (% on dry weight basis).	38
3	Amino acid composition of wheat flour, defatted	41
	wheat germ, wheat germ protein concentrate, defatted	
	rice bran and rice bran protein concentrate (g/ 100 g	
	protein).	
4	Amino acid composition of wheat flour supplemented	43
	with different levels of defatted wheat germ (g/ 100 g	
	protein).	
5	Amino acid composition of wheat flour	44
	supplemented with different levels of wheat germ	
	protein concentrate (g/ 100 g protein).	
6	Amino acid composition of wheat flour	46
	supplemented with different levels of defatted rice	
	bran (g/ 100 g protein).	
7	Amino acid composition of wheat flour	47
,	supplemented with different levels of rice bran	.,
	protein concentrate (g/ 100 g protein).	
8	Regression coefficients of predicted cubic model for	51
O	response of the emulsification activity index (cm ² / g	31
	protein) as dependent variable of wheat flour, wheat	
	germ meal, defatted wheat germ and wheat germ	
	protein concentrate at different concentrations and	
	times as independent variables.	
9	Regression coefficients of predicted cubic model for	54
J	response of the emulsification activity index (cm ² / g	J 4
	protein) as dependent variable of wheat flour, rice	

	bran meal, defatted rice bran and rice bran protein concentrate at different concentrations and times as	
	independent variables.	
10	Water, oil binding capacity (g w /g s, g w / g p) and	56
	water oil binding index (WOBI) of wheat flour and	
	wheat germ protein products.	
11	Water, oil binding capacity (g w /g s, g w / g p) and	58
	water oil binding index (WOBI) of wheat flour and	
	rice bran protein products.	
12	Farinogram parameters of dough prepared using	65
	wheat flour with different supplementation levels of	
	wheat germ protein products.	
13	Farinogram parameters of dough prepared using	68
	wheat flour with different supplementation levels of	
	defatted rice bran and rice bran concentrate.	
14	Extensogram parameters of dough prepared using	71
	wheat flour with different supplementation levels of	
	wheat germ protein products.	
15	Extensogram parameters of dough prepared using	74
	wheat flour with different supplementation levels	
	from rice bran protein products.	
16	Proximate analysis of biscuits prepared using wheat	78
	flour with different supplementation levels of wheat	
	germ protein products (% on dry weight basis).	
17	Proximate analysis of biscuits prepared using wheat	79
	flour with different supplementation levels of rice	
	bran protein products (% on dry weight basis).	
18	Physical properties of biscuits prepared using wheat	81
	flour with different supplementation levels of wheat	
	germ protein products.	
19	Physical properties of biscuits prepared using wheat	82
	flour with different supplementation levels of rice	

VIII

	bran protein products.	
20	Texture profile of biscuits prepared using wheat flour	84
	with different supplementation levels of wheat germ	
	protein products.	
21	Texture profile of biscuits prepared using wheat flour	85
	with different supplementation levels of rice bran	
r	protein products.	
22	Mean values of sensory evaluation of biscuits	87
	prepared using wheat flour with different	
	supplementation levels of wheat germ protein	
	products.	
23	Mean values of sensory evaluation of biscuits	88
	prepared using wheat flour with different	
	supplementation levels of rice bran protein products.	

LIST OF FIGURES

No.	Title	Page
1	Three-dimension response surface plot of emulsification	50
	activity index (cm ² / g protein) for wheat flour (A), wheat	
	germ meal (B), defatted wheat germ (C) and wheat germ	
	protein concentrate (D) at different concentrations and	
	times.	
2	Three-dimension response surface plot of emulsification activity	53
	index (cm ² / g protein) for wheat flour (A), rice bran meal (B),	
	defatted rice bran (C) and rice bran protein concentrate (D) at	
	different concentrations and times.	
3	Foam capacity (FC) (cm3) and foam stability (FS) (min) of	60
	wheat flour, wheat germ meal, defatted wheat germ	
	(DWG) and wheat germ protein concentrate (WGPC) at	
	different concentrations (1.0, 1.5 and 2 %) and times.	
4	Foam capacity (FC) (cm3) and foam stability (FS) (min) of	62
	wheat flour, rice bran meal, defatted rice bran (DRB) and	
	rice bran protein concentrate (RBPC) at different	
	concentrations (1.0, 1.5 and 2 %) and times.	
5	Farinogram parameters of dough behavior of wheat flour	66
	and its blends with wheat germ protein products.	
6	Farinogram parameters of dough behavior of wheat flour	69
	and its blends with rice bran protein products.	
7	Extensogram parameters of dough behavior of wheat flour	72
	and its blends with wheat germ protein products.	
8	Extensogram parameters of dough behavior of wheat flour	75
	and its blends with rice bran protein products.	

LIST OF ABBREVIATION

BV Biological value

C-PER Calculated protein efficiency ratio

CS Chemical score

DRB Defatted rice bran

DWG Defatted wheat germ

EA Emulsification activity

EAAI Essential amino acid index

ESI Emulsion stability index

FC Foaming capacity

FS Foaming stability

OBC Oil binding capacity

RBM Rice bran meal

RBPC Rice bran protein concentrate

WBC Water binding capacity

WF Wheat flour

WGM Wheat germ meal

WGPC Wheat germ protein concentrate

WOBI Water-oil binding index