PRODUCTION OF CUCURBIT PLANTS EXPRESSING AN ANTIFUNGAL GENE

By

HOSSAM MOHAMED ZAKARIA

B.Sc. Agric. Sci. (Biochemistry), Fac. Agric., Cairo Univ. Egypt, Y...

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

AGRICULTURAL SCIENCES (Genetics)

Department of Genetics
Faculty of Agriculture
Cairo University
EGYPT

Y . . Y

APPROVAL SHEET

PRODUCTION OF CUCURBIT PLANTS EXPRESSING AN ANTIFUNGAL GENE

M.sc. Thesis By

HOSSAM MOHAMED ZAKARIA

B.Sc. Agric. Sci. (Biochemistry), Fac. Agric., Cairo Univ. Egypt, Y · · ·

Approved by:
Dr. MAHMOUD M. SAKER Professor of Plant Biotechnology, National Research Center.
Dr. MONA H. HESSIN Professor of Genetics, Fac. Agric., Cairo University.
Dr. NAGLAA A. ABDALLAH Professor of Genetics, Fac. Agric., Cairo University. Date: /

SUPERVISION SHEET

PRODUCTION OF CUCURBIT PLANTS EXPRESSING AN ANTIFUNGAL GENE

M.sc. Thesis By

HOSSAM MOHAMED ZAKARIA

B.Sc. Agric. Sci. (Biochemistry), Fac. Agric., Cairo Univ. Egypt, Y...

SUPERVISION COMMITTEE

Dr. NAGLAA A. ABDALLAH Professor of Genetics, Fac. Agric., Cairo University

Dr. ATEF S. SADIK
Professor of Microbiology, Fac. Agric., Ain Shams University

CONTENTS

INTRODUCTION
REVIEW OF LITERATURE
\. Fusarium wilt of watermelon
Y. Plant regeneration
۳. Cucurbits regeneration
٤. Watermelon regeneration
o. Watermelon transformation
a. Transformation via Agrobacterium-mediated method
b. Transformation <i>via</i> biolistic gun method
7. Production of transgenic watermelon plants
∨. Production of genetically modified plants against fungal
diseases using the defensin gene
MATERIALS AND METHODS
١.
MATERIALS
a. Plant materials
b. Tissue culture chemicals
c. Plasmids
d. Bacterial strains
e. Primers
۲.
METHODS
a. Regeneration conditions
b. Establishment of watermelon regeneration system
\. Explants preparation
7. Shoot regeneration
۳. Shoot elongation
٤. Root formation and acclimatization
c. Watermelon transformation
\. Agrobacterium-mediated transformation system

7. Microprojectile bombardment transformation system	
a. Preparation of plasmid DNA for transformation	
b. Sterilization of gold particles and coating with DNA	
c. Bombardment and regeneration of bombarded explants	
d. Transformation with the Msdef I gene	
e. Evaluation of the transgenic watermelon plants	
a. Gus histochemical assay	
b. Leaf painting	
c. Polymerase chain reaction	
). DNA extraction	
Y. PCR assay	
d. Southern blot analysis	
e. Digestion of the plant genome DNA	
f. Southern blot and hybridization	
RESULTS AND DISCUSSION	
\. Watermelon regeneration	
a. Effect of carbon source on watermelon regeneration	
b. Elongation and root formation stages	
Y. Establishment of the watermelon transformation	
a. Agrobacterium transformation of watermelon	
\. Expression of gus gene	
Y. Expression of bar gene	
". PCR detection of transgenic plants	
b. Microprojectiel transformation of watermelon	
Y. Expression of gus gene	
7. Expression of bar gene	
T. PCR detection of transgenic plants	
*. Watermelon transformation using the <i>Msdef</i> I gene	
Evaluation of the putative transgenic plants for <i>Msdef</i> gene	
a. PCR assay	
b. Southern blot hybridization analysis Conclusions	
SUMMARY	

REFERENCES	77
ARABIC SUMMARY	

LIST OF FIGURES

No	Title	Page
١.	Diagram showing the plant expression genes between the two boards of the binary vector pISV TVA	* *
۲.	Diagram showing the plasmid pAB ⁷	4 4
٣.	Diagram showing the pMONTTOT plasmid containing the <i>MsDeFI</i> exon gene under the control of ToS	
٤.	promoter and nos terminator	۲۳ ۳۸
٥.	GUS histochemical assay of transformed hypocotyl explant treated with the <i>Agrobacterium</i> strain LBA ^{££,£} carrying the plasmid pISV [₹] ¬V [↑]	££
٦.	Leaf painting analysis of melon leaves showing necrosis on the non- transgenic leaf (left) and normal green color on the bialaphos-resistant leaf (right)	٤٥
٧.	PCR analysis of putative <i>Agrobacterium</i> -transformed watermelon plants (Lanes 1-19) using <i>gus</i> -specific primers to amplify Y·V· bp. Amplicons of the full <i>gus-intron</i> gene were presented in Y out of the 19 tested plants. M: Y·· bp DNA	٤٧
۸.	ladder plus	٤٧
٩.	GUS histochemical assay of bombarded hypocotyl explant. Transformed explant gave blue dots (left), while the non-transformed explants remained colorless (right)	٤٩
١٠.	PCR analysis for transformed plants bombarded with pAB7 using <i>gus</i> gene specific primers to amplify a	- 4
۱۱.	fragment of \\.\.\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	٥١
	amplify of the gene. Only seven out of 'gave a positive amplicons. M: ' bp DNA	٥٢

	ladder	
۱۲.	PCR analysis of putative watermelon plants (Lanes '-'9') bombarded with the plasmid pMONYY70", amplifying Yo. bp. M: ' bp DNA ladder	00
۳.	Southern blot hybridization for the <i>Hind</i> III digested genome for two transgenic watermelon plants (lanes \gamma and \gamma) and non -transgenic plant (lane\gamma) as a negative	
	control	٦٥

LISTT OF TABLES

No	Title	Page
١.	The nucleotide sequences of the primers used for PCR analysis	7 £
۲.	Different shoot formation media compostion	40
٣.	Different shoot elongation media compostion	**
٤.	Watermelon regeneration frequency on different media using the proximal zone of hypocotyls explant	٣٦
٥.	Carbon source effect on the regeneration of watermelon cv. Giza	٤٠
٦.	Effect of different media composition on the shoot elongation and on the percentage of vertification in the watermelon plants	٤١
٧.	Histochemical GUS assay of bombarded watermelon explants cvs. Giza v and Giza vv	٤٩
۸.	Effect of different DNA concentrations and pressures on transformation frequency of watermelon cultivars Giza v	٥,
	Giza YV using pAB7 plasmid and hypocotyl explant	- /

Name of Candidate: Hossam Mohamed Zakaria Degree: MS.C. Title of Thesis: Production of cucurbit plants expressing an antifungal gene. Supervisors: Prof. Dr. Naglaa A. Abdelallah and Prof. Dr. Atef S. Sadik,

Department: Genetics

Branch: Genetics Approval: / /

ABSTRACT

Watermelon is among the most important vegetable crops of the Cucurbitaceae. Members of this family are susceptible to different kinds of diseases such as fungal infection. In this investigation, an attempt to establish an efficient regeneration and transformation systems of the Egyptian watermelon cvs Giza, Giza , Giza , to produce transgenic plants resistant for fungal infection have been established. The proximal zone of hypocotyls was used as explants with four shoot formation media containing different concentrations of BAP, AgNOr and ABA. The regeneration system of the watermelon cultivars Giza \ and Giza \ \ was improved by adding \ mg/l BA, ·, Yo mg/l ABA and o mg/l AgNOr (Media WM) as it gave the highest respond of hypocotyl explants. The enhanced shoots were evaluated for elongation stage on four different elongation media.EWMY medium, containing •• μg/l BAP, was considered as the best medium (ΔΥ΄ of shoots were elongated with only A. vitrification). The elongated shoots produced roots on MS supplemented with NAA at concentration of ξ· μg/l for both Giza \ (ΔΛ,Λ½) and Giza \ \ (Υ٩½). Transformation of explants was established using DNA bombardment with the plasmid pAB7 carrying gus and bar genes as well as with Agrobacteriummediated transformation method with the binary vector pISVYTYA harboring the gus-intron and bar genes. Integration of the transgenes in the genome of putative transgenic plants and expression of transgenes was verified via histochemical assay, PCR and leaf painting tests. Furthermore, the plasmid pMONYYIOr containing the defensin gene, isolated from the leaves of alfalfa seedlings, under the control of the ToS promoter was introduced into the cultivar Giza \ via biolistic gene transfer to develop resistance against the fungal infection. Putitive transformants plants were screened using PCR and Southern blot analysis. Total genomic DNA of transformed plants were digested with HindIII and hybridized with labeled MsdefI gene. Positive labeled bands were obtained at different size fragments indicating that the gene allocated in different position in their genomes.

Keywords: Proximal zone of hypocotyls, *Agrobacterium*-mediated transformation, DNA bombardment, vitrification, defensin gene

ACKNOWLEDGMENT

I would like to express my sincere gratitude to **Prof. Dr.**Naglaa A. Abdallah, Prof. of Genetics, Genetics Department,

Faculty of Agriculture, Cairo University for her supervision,

continous guidance, and fruitful discussion.

Thanks are also due to **Prof. Dr. Atef S. Sadik**, Prof. of Agric. Microbiol., Department of Agric. Microbiol., Faculty of Agriculture, Ain Shams University and **Dr. Gihan M. Hosny**, Senior Scientist of PGTL, AGERI, ARC, Giza for their sincere help and supervision during the accomplishment of this manuscript.

Thanks also due to **Prof. Dr. Hanaiya A. El-Itriby**, former President of ARC for her endless help, encouragement during this work.

I would like to express my thanks to **Dr. Roba M. Ismail** and my colleagues; **El-Dessoky, Attia, Ismail, Tarek** and **Khaled Hashem** at AGERI, ARC, for their encouragement during this study.

INTRODUCTION

Cucurbitaceae is an economically important family which throughout tropical and subtropical regions (Whitaker and Davis, 1977). In Egypt, the cultivated area of melon is $\forall \circ, \cdots$ hectares, providing an export value that exceeds ".... dollars annually (FAOSTAT, Y...). Plant diseases caused by fungi are often one of the most destructive agent and difficult to control. Watermelon is infected with a large number of fungal diseases including Fusarium, downy mildew, powdery mildew, etc. Serious diseases caused by fungi are usually controlled by chemical fungicides that the farmer applies to crops. Two different types of fusarium infection affect watermelon cultivation all over the world. Fusarium crown and foot rot is caused by Fusarium solani f. sp. Cucurbitae which exhibits host specificity for all cucurbits. Also, Fusarium wilt is caused by a seed- and soilborne fungus that is specific to melon and watermelon (Bruton et *al.* ۲ • • ۷).

Genetic engineering has opened new avenues to modify crops, and provided new solutions to solve specific needs. The powerful combination of genetic engineering and conventional breeding programs allows useful traits to be introduced into commercial crop varieties within an economically appealing time frame (Hansen and Wright, 1999).

Plants are amazingly adaptive at meeting environmental stresses and attacks from insects, fungi and viruses. Over the millennia and throughout millions of generations, plants have developed innovative

ways to survive and prosper under harsh conditions. Several molecules in plants have been reported to contribute to plant defense activity: proteins or peptides, such as lectins, ribosomal inactivating proteins, chitinases, proteases, defensins, peroxidases, ubiquitin-like peptides, ribonucleases, arginine- and glutamate-rich peptides and unclassified proteins, organic compounds, classified into phytoanticipins and phytoalexins, which include phenols and phenolic glycosides, unsaturated lactones, sulphur compounds, saponins and dienes and active nitrogen and oxygen species, such as reactive nitrogen oxide species and hydrogen peroxide (Wang and Ng, ۲۰۰۳).

Higher plants have developed a range of systems by which to protect themselves from damage associated with biotic and abiotic stress (Tregear *et al.*, $^{7} \cdot \cdot ^{7}$).

Plants have developed a first line of defense toward off attacking fungi, called defensins. Plant defensins facilitate genetic modification of crops for enhanced resistance to fungal attacks. In general, plant defensin blocks calcium channels, which are used as a communication network by the fungus to direct its spread by disrupting the calcium pathway that will inhibit fungi growth. A number of studies has been performed to unravel the mode of action of plant defensins. It has been shown that plant defensins induce an array of relatively rapid responses in fungal membranes, including increased Ca⁷⁺ uptake, K⁺ efflux, increased uptake of fluorescent dyes, and membrane potential changes. Furthermore, the existence of high-affinity binding sites for plant defensins on fungal cells and plasma membrane fractions has been demonstrated (Thevissen *et al.*, Y···). The first step in the path

leading to fungal growth inhibition would be the binding of plant defensins to specific sites on the plasma membrane of fungal hyphae. Interaction with these binding sites would subsequently enable plant defensins to insert into the plasma membrane, thus affecting membrane structure and permeability to certain solutes, such as Ca^{*+} and K⁺, some of which play an important role in fungal growth and development.

In vitro regeneration of adventitious shoots is a critical stage of genetic transformation as they increase the frequency of transformation. Recently, a novel direct shoot regeneration using the proximal hypocotyl was efficiently applied in melon by Curuk *et al.* $(^{\gamma} \cdots ^{\gamma})$, flax by Dedicova *et al.* $(^{\gamma} \cdots ^{\gamma})$, cotton by Ouma *et al.* $(^{\gamma} \cdots ^{\zeta})$ and canola by Cardoza and Stewart $(^{\gamma} \cdots ^{\gamma})$.

Fungal diseases are the one of the most important problems that restrict the production of watermelon. Genetic engineering approach is a valuable biotechnology for breeding purposes and can be used to introduce resistant gene not found in the gene pool of particular species.

The main aim of this work was to produce transgenic watermelon plants resistant to fungal infection, especially fusarium using the plant defensingene. Achieving this goal required the following:

'- To improve the previously developed regeneration system of the two Egyptian watermelon cultivars Giza' and Giza' using the proximal zone of hypocotyls.

- Y- To compare between *Agrobacterium*-mediated transformation and microprojectile transformation systems in watermelon for establishing the best conditions for transformation system in watermelon.
- ν- To introduce the plant defensin gene into the Egyptian watermelon cultivars for acquiring resistance for fungal infection.
- ξ- To confirm the integration and expression of the transgenes in the putative transgenic plants by molecular analysis.