Role of Multislice CT in assessment of vascular anomalies in the donors before living donor liver transplantation.

Essay submitted for the Partial Fulfillment of Master Degree of Radio-diagnosis

By

Dalia Ibrahim Samy Aggour MB.B.Ch.

Supervisors

Prof. Dr. Wahid Hussein tantawy

Professor of Radiodiagnosis

Faculty of Medicine - Ain Shams University

Dr. Mona Yehia Hemimy

Lecturer of Radiodiagnosis
Faculty of Medicine
Ain Shams University

Ain Shams University 2010

Contents

List of Figures	II
List of Abbreviations	VIII
Chapter (1) Introduction & Aim of the Work	1
Chapter (2) Anatomy of the liver:	
a-Gross anatomy of the liver.	5
b-CT anatomy of the liver.	31
Chapter (3) Pathology	37
Chapter (4) CT physics principles	51
Chapter (5) Technique of MSCT examination.	81
Chapter (6) CT manifestations	97
Summary & conclusion	142
References	145
Arabic summary	1

List of figures

Fig.1	Functional division of the liver and liver	6
Fig. 2	segments according to Couinaud's nomenclature Overview of intrahepatic vascular and biliary anatomy	7
Fig. 3	. Shows anatomic variations in the hepatic artery	9
Fig 4.	Intrahepatic Branches of the Portal Vein. T, pars transversus; U, embryonic ductus venosus; P, posterior segment; A, anterior segment.	10
Fig. 5	Illustrations show classification scheme of portal vein anatomy. LPV = left portal vein, RPPV = right posterior portal vein, RAPV = right anterior portal vein standard portal vein anatomy (A), trifurcation (B), right posterior portal vein as first branch of main portal vein (C), segment VIIbranch as separate branch of right portal vein (D), and segment VI branch as separate branch of right portal vein (E)	12
Fig. 6	Tributaries of the portal vein quoted from	13
Fig.7	Three major hepatic veins drain the liver. The caudate segment of the liver usually drains directly into the inferior vena cava	14
Fig. 8	·	15
Fig. 9	•	16

Fig. 10	MRIs of a donor and recipientpair. (A)	23
	Preoperative image from a donor. The RL is	
	outlined. (B) The remnantliver 14 days after	
	surgery. Dramaticgrowth of the left lobe is	
	apparent. (C)The RL in the recipient 30 days	
	after transplantation. Again, dramatic growthcan	
	be appreciated	
Fig. 11	Incising the inferior vena cava lateral to the	27
	middle hepatic vein for widening an orifice {(A)	
	A smaller orifice of the recipient for a left liver	
	graft in an adult-to-child transplantation. (B) An	
	extension of an original orifice of the common	
	trunk of the middle hepatic vein and the left	
	hepatic vein	
Fig.12	The MHV tributaries reconstruction	28
Fig. 13	surgical techniques used for portal vein reconstruction	30
Fig. 14	A, Duplex Doppler US demonstrating very high-	40
	resistance flow in the hepatic artery in a patient	
	immediately after liver transplantation. B,	
	Duplex Doppler US of the same patient 3 days	
	later demonstrating a normal resistive index	
	(0.74) in the hepatic artery. The initial elevated	
	resistive index was presumed to be the result of	
	postoperative edema. C, Duplex Doppler US of a	
	different patient with very high velocities with	
	the PV (>100 cm/second) immediately after	
	surgery. D, Duplex Doppler US of the same	
	patient as C, which demonstrates resumption of	
	normal flow through the PV (45 cm/second) 3	
	days later	
Fig.15	CT angniography Volume rendered	42
	reformatted image shows that hepatic artery	
	arise from coelioc trunk	

Fig.16	48-year-old man who had undergone liver	44
	transplantation and whose subsequent MR	
	angiographic findings were interpreted as normal	
Fig. 17	Normal coeliac arteriogram demonstrating a	46
	widely patent arterial anastomosis. Note that	
	both the donor and recipientgastroduodenal	
	arteries have been ligated	
Fig.18	Transhepatic portal venogram	47
Fig.19	normal hepatic venogram	48
Fig. 20	Hepatic artery thrombosis after LDLT. (a) Colour	51
	Doppler US showed patent coeliac artery (arrow). (b)	
	Absence of flow and Doppler signal seen at the expected	
	location of the hepatic artery (arrow). PV: Portal vein. (c)	
	Digital subtraction angiogram of the coeliac axis	
	confirmed thrombosis of the hepatic artery (arrow)	
FIG. 21	A:T1-weighted magnetic resonance image demonstrating	52
	multiple, discrete low-signal lesions. T2-weighted image	
	(not shown) demonstrated increased signal in the same	
	regions, suggestive of infarcts. B, Magnetic resonance	
	angiogram demonstrating an abrupt cutoff of the hepatic	
	artery (arrow) near the origin from the celiac artery	
	compatible with thrombosis	
Fig. 22	Hepatic artery stenosis (HAS). (A) Doppler ultrasound	53
	evaluation of the main hepatic artery (MHA) with spectral	
	wave formanalysis in an adult liver transplant recipient.	
	The MHA evaluationshows an arterial resistive index	
	(RI) of 0.38. (B) Same Dopplerevaluation as A. The left	
	hepatic artery (LHA) evaluation showing anarterial	
	resistive index (RI) of 0.42. (C) Digital subtraction	
	angiogramof the hepatic artery of the same patient	
	showing a long segmentanastomotic stenosis	
	(arrowheads)	

- Fig. 23

 4 6-year-old man with highgradehepatic artery stenosis 54 after liver transplantation.A, Right posterior oblique volume-rendered three-dimensional multislice CT angiogram shows severe stenosis (arrow) of graft at anastomosis of graft with donor hepatic artery. B, Catheter angiogram of supraceliac aortic graft reveals high-grade stenosis at anastomosis (arrow)
- Fig. 24 (A, B) Axial and coronal MIP images show 57 apseudoaneurysm in the distal portion of the hepatic artery in a 57-yearold man with cadaveric liver transplant. (C) Conventional angiography confirmed the MDCTA findings
- Fig. 25

 A) Selective celiac trunk arteriogram showed a small-sized hepatic artery with reduced perfusion into the peripheral arterial circulation of the liver. Note the enlarged splenic artery with increased flow and splenomegaly. (B) Late phase of the celiac arteriogram showed persistent enhancement of the portal vein and splenic vein. (C) Embolization of the proximal splenic artery was performed. A postembolization angiogram showed significant improvement in hepatic artery perfusion. (D) After embolization, late phase of the celiac arteriogram showed liver enhancement due to flow in the hepatic artery and mild portal vein perfusion of the liver. The arrows show the common hepatic artery
- Fig. 26 Partial portal vein thrombosis(PVT). (A) Gray scale 60 ultrasound evaluation of a transplant recipient with a shallow heterogeneous echogenic mass (arrowhead) along the wall of the main portal vein. This is consistent with chronic partial thrombosis of the portal vein (P). (B) Color Doppler ultrasound evaluation of a transplant recipient with the same thrombus (arrowhead) along the wall of the main portal vein. This is consistent with partial thrombosis of the portal vein. (C) Unenhanced CT axial image at the level of the upper abdomen of the same liver transplant recipient The portal vein visualized is intrahepatic and not extrahepatic, however. The images demonstrate a high density portal vein thrombus
- Fig. 27 Stenosis at the portal anastomosis in a 40-year-old patient 61 with severe ascites on the 8th day afterliver

transplantation. (a) B-mode US image shows a stricture (arrow) at the portal anastomosis. (b) ColorDoppler US image demonstrates patency of the portal vein, with turbulent flow at the stenosis (arrow).(c) Pulsed Doppler US image and waveform of a portal vein segment proximal to the anastomosis show normalflow velocity. (d) Pulsed Doppler US image and waveform otained at the portal anastomosis show an increasefrom 40 to 130 cm/sec in mean flow velocity

- **Fig. 28** Coronal maximum intensity projection image from 62 gadolinium-enhancedMR angiography demonstrates the stenosis (arrow) with associated poststenotic dilatation of the intrahepatic portal vein
- Fig. 29 56-year-old male liver transplant recipient. Measurement 63 of venouspulsatility index on triphasic waveform from the middle hepatic vein (MHV). Venouspulsatility index is difference between maximum (A) and minimum (B) frequency shiftdivided by A. With triphasic waveform (above), this is A + B / A
- Fig. 30 52-year-old maleliver transplant patient with outflow 64 veinstenosis. LHV = left hepatic vein, V = velocity. A, Doppler spectrum from LHV shows weakbiphasic waveform (venous pulsatilityindex = 0.22). B, Transjugular hepaticvenogram showsanastomotic stenosis (ARROW)

- Fig. 31 IVC thrombosis. (a) Subcostal oblique US image 66 obtained through the hepatic confluence shows anechogenic thrombus (arrows) that fills the lumen of the right hepatic vein and extends into the IVC. (b) Right paramedian sagittal US image shows the IVC thrombus (arrows)
- **Fig. 32** Inferior vena cava (IVC) stenosis. (A) Color Doppler 67 ultrasoundevaluation of the inferior vena cava (IVC). The transducer is along the longitudinal axis of the IVC. There is progressive narrowing of the IVC with a significant stenosis at the level of the arrowheads. (B) Axial MR image at the level of the upper abdomen shows a pinhole residual lumen (arrowhead) due to the significant stenosis seen in the Doppler examination of A. (C) **Digital** subtraction inferior vena-cavogram demonstrates the significant suprahepatic IVCstenosis (arrows) close to the IVC-right atrial (RA) junction. IVC, inferior vena cava; RRV, right renal vein; LRV, left renal vein

List of Abbreviations

2D: Two Dimensional

3D: Three dimensional

A: Anterior segment

Acc A: Accessory Artery

AIP: Average Intensity Projection

ASB: Anterior Sectoral Branch

B.A: Biliary Atresia

BCS: Budd Chiari Syndrome

CBD: Common Bile Duct

CHA: Common hepatic artery

CHD: Common Hepatic Duct

CP: Caudate Process

CT: Computed Tomography

CTAP: Computed Tomography Arterial Portography

CTHA: Computed Tomography During Hepatic Angiography

DAS: Data Acquisation System

DAS: Data Aquisation System

DE: Detector Element

FHF: Fulminant Hepatic Failure

G.B: Gall Bladder

GDA: Gastro duodenal Artery

HA: Hepatic artery

HCC: Hepatocellar Carcinoma

HCT: Helical computed tomography

HD: Hepatic duct

HP: Horizontal Part

HT: Hepatic Trunk

IV: Intravenous

IVC: Inferior Vena Cava

LDLT: Living-donor liver transplantation

LGA: Left gastric artery

LHA: Left Hepatic Artery

LHD: Left Hepatic Duct

LHV: Left hepatic vein

LL: Left lobe

LPV: Left Portal Vein

LPV: Left portal vein

LT: Liver transplantation

MDCT: Multi Detector Row Computed Tomography

MHV: Middle hepatic vein

MIP: Maximum Intensity Projection

MP: Main portal vein

MPR: Multi Planar Reformation

MRIs: Magnetic Resonance Images

MSCT: Multi Slice Computed Tomography

NCECT: Non Contrast Enhaced Computed Tomography

P: Posterior Segment

PC: Para Caval

PHA: Proper hepatic artery

PSB: Posterior Sectoral Branch

PV: Portal Vein

PV: Portal vein

RAPV: Right Anterior Portal Vein

RASD: Right Anterior Segmental Duct

RHA: Right Hepatic Artery

RHD: Right Hepatic Duct

RHV: Right hepatic vein

RHV: Right hepatic vein

RLT: Reduced Sized LiverTransplantation

RPD: Right Posterior Duct

RPPV: Right Posterior Portal Vein

RPSD: Right Posterior Segmental Duct

RPV: Right portal vein

RPV: Right portal vein

RPV: Right Portal Vein

S: Spleen

SA: Splenic Artery

SLT: Split Liver Transplantation

SMA: Superior Mesenteric Artery

SPG: Spiege s Segment

SPV: Splenic Vein

SSD: Shaded Surface Display

St: Stomach

PT: Pars Transversus

T: Tesla

T: Tube

U: Embryonic ductus venosusm

UP: Umblical Part

US: Ultrasound

List of Figures

Figure	Title	Page
Fig. (1)	Anterior view of the position of the liver in the right	
	upper human abdomen	6
Fig. (2)	The superior surface of the liver	7
Fig. (3)	Inferior surfaces of the liver	9
Fig. (4)	Functional division of the liver and liver segments	
	according to Couinaud's nomenclature	12
Fig. (5)	Overview of intrahepatic vascular and biliary anatomy	15
Fig. (6)	Angiogram of the hepatic arterial anatomy.	17
Fig. (7)	Intrahepatic Branches of the Portal Vein.	18
Fig. (8)	Schematics illusterate the normal portal vein branches.	19
Fig. (9)	Tributaries of the portal vein.	
		20
Fig. (10)	Normal hepatic venous anatomy.	
		22
Fig. (11)	Portal and hepatic veins.	23
Fig. (12)	Retraction of right hepatic	
	lobe medially exposes small venous tributaries that	
	drain the right lobe directly into the retrohepatic vena	
	cava.	25
Fig. (13)	Intrahepatic divisions of bile ducts and hepatic arteries	27
Fig. (14)	Anatomy of segment I with the biliary drainage.	29
D: - (15)	A.E. Dual phase contract appeared liver coops and different	
Fig. (15)	A-E, Dual-phase-contrast, enhanced liver scans on different	
	levels.	35
Fig. (16)	SSD image (anterior projection with slight inferior angulation) of a	
	32-year-old man shows conventional arterial supply to the liver.	36
Fig. (17)	Hepatic arterial branching patterns can be divided into 10 types.	
	Aberrant vessels are indicated in black.	40
E'- (10)		40
Fig. (18)	Trifurcation of the portal vein.	41

Fig. (19)	Separate origin of the right posterior sectoral branch from the main portal vein.	42
Fig. (20)	*	72
119. (20)	Drawings illustrate the types of RPV branching.	43
Fig. (21)	Normal hepatic venous anatomy. Drawing shows major hepatic	
	veins and short hepatic vein orifices.	46
Fig. (24)	Beam collimation in 16-section CT. (a) Narrow collimation	
	exposes only the small central detector elements. (b) Wide	
	collimation exposes all of the detector elements.	56
Fig. (25)	Section collimation in multi– detector row CT. (a) Narrow	
	collimation is coordinated with the data acquisition system (DAS)	= 0
F: (2.0)	(b) Wide collimation is coordinated with the (<i>DAS</i>).	58
Fig. (26)	Reconstruction of axial images from projection data.	60
Fig. (27)	Anisotropic and isotropic data.	64
Fig. (28)	Use of a volumetric data set. Projection data are	
	typically used to reconstruct axial images of	
	interpretive thickness for conventional review.	
		66
Fig. (29)	Row of data encountered along a ray of projection. The	
	data consist of attenuation information calculated in	60
T1 (20)	Hounsfield units.	68
Fig. (30)	AIP of data encountered by a ray traced through the	5 0
F: (21)	object of interest to the viewer.	70
Fig. (31)	Orthographic volume rendering of the airways.	
	Volume-rendered image of a patient with tracheal	74
Fig. (22)	stenosis. Attanuation profiles obtained with and	74
Fig. (32)	Attenuation profiles obtained with and without beam hardening for an x-ray beam passing	
	through a uniform cylindrical phantom.	76
Fig. (33)	CT image of a Teflon block in a water phantom	70
11g. (33)	shows aliasing (arrow) due to under sampling of the	
	edge of the block.	77
Fig. (34)	CT images of the body created	
8 , (,	With conventional reconstruction (a) and	
	with motion artifact correction (b)	78
Fig. (35)	Formation of a ring artifact when a detector is out of	
<u> </u>	calibration.	79
Fig. (36)	CT image of a water-filled phantom shows ring	
	artifacts.	80
Fig. (37)	Liver CT imaging. (a) Three-dimensional volume-rendered CT	81

	image (b) Volumetric reconstruction image from CT angiography.	
Fig. (38)	Liver cyst. Multidetector CT images obtained with 1-mm collimation with 1.25-mm section thickness (a) and 2.5-mm collimation with 5-mm section thickness (b) show a tiny low-attenuation lesion in the liver (arrow in a).	02
Fig. (39)	CTAP image (the marks are pointing to branches of the portal vein	83
11g. (37)	supplying segment 8).	92
Fig. (40)	 1-Volume-rendering image reveals a replaced right hepatic artery arising from the superior mesenteric artery during hepatic arterial phase (arrow). 2. MIP image reveals a replaced right hepatic artery arising from the superior mesenteric artery during hepatic arterial phase (arrow). 3. Curved planar reformation image reveals an accessory right hepatic artery from the superior mesenteric artery during hepatic arterial phase (arrow). 4. Volume-rendering image reveals an accessory inferior right hepatic vein during portal venous phase (arrow). 5. Volume-rendering image reveals two accessory inferior right hepatic veins during portal venous phase (arrows). 6. Maximum intensity projection of portal venous system shows trifurcation of the main portal vein (M) into anterior (A), posterior (P), and left (L) branches. No right portal vein trunk is seen 	96
Fig. (41)	3D CT arteriogram shows normal hepatic arterial anatomy	99
Fig. (42)	VR coronal oblique CT image shows the replaced LHA arising from the LGA	100
Fig. (43)	Oblique coronal 3D CT arteriogram in a 53-year-old female candidate with hepatic arterial variant shows the RHA descending from the SMA (arrow).	101
Fig. (44)	Oblique coronal 3D CT arteriogram in candidate shows hepatic arterial variant, comprising replacement both of RHA (white arrow) to SMA and of LHA (black arrow) to left gastric artery.	102
Fig. (45)	Three-dimensional volume-rendered (VR) image shows the normal hepatic arterial anatomy.	105
Fig. (46)	Anterior VR image shows the normal arterial anatomy.	106
Fig. (47)	Thick-slab coronal oblique maximum-intensity-projection (MIP) image from CT data shows a replaced RHA arising from the	107