SNAP-II and SNAPPE-II:

Simplified newborn illness severity and mortality risk scores

Thesis

Submitted for Partial Fulfillment of Master Degree in Pediatrics

By

Aly Abdel Rahman Ahmed

M.B, B.CH (2002), Cairo University

Under Supervision of

Prof. Dr. Laila Hussien Mohamed

Professor of Pediatrics
Faculty of Medicine, Cairo University

Dr. Mohamed Ahmed Abu El-Hassan

Assistant professor of pediatrics
Faculty of Medicine, Cairo University

Dr. May Ahmed Khairy

Assistant professor of pediatrics

Faculty of Medicine, Cairo University

Faculty of Medicine Cairo University 2008

Dedication

To the spirit of my father, who gave me everything and took nothing.

To my mother,
who helped me in every step of my life.

To my wife, who encouraged me to complete this work.

To my son,
who made my days to shine.

To my family and all my friends, who helped me.

ACKNOWLEDGMENT

Praise be to ALLAH, the Merciful and the Compassionate. For all countless gifts I have been offered, one of these gifts is accomplishing this research work.

I am extremely grateful to Prof. Dr. Laila Hussein Mohamed, Professor of Pediatrics, Faculty of Medicine, Cairo University. For her sincere cooperation, continuous unlimited help and continuous guidance during this work. I am deeply touched by this help and concern.

I would like to express my great thanks to Dr. Mohamed Ahmed Abu El-Hassan, Assistant Professor of Pediatrics, Faculty of Medicine, Cairo University. For continuous encouragement, help and support.

I am so grateful to Dr. May Ahmed Khairy, Assistant Professor of Pediatrics, Faculty of Medicine, Cairo University. For her valuable help and guidance in the course of this research. Her sincere efforts will never be forgotten and I shall always remain indebted to her.

CONTENTS

	<u> Page</u>
List of tables	I
List of figures	II
List of abbreviations	III
Abstract	VI
Introduction and aim of work	1
Review of literature	
• Development of scoring systems	4
Validation of a scoring system	8
The need for scoring system	13
Types of scoring systems	16
Scores used in PICUs	
Specific scores in NICUs	34
Patient and methods	49
Results	56
Discussion	74
Summary and conclusion	80
References	86
Arabic summary	

List of tables

Table	Table Title	
No.		
1	Pediatric Risk of Mortality (PRISM) score	22
2	Pediatric Risk of Mortality (PRISM) III score	23
3	Pediatric Logistic Organ Dysfunction (PELOD) score	32
4	Variables of neonatal scores	37
5	CRIB Score	39
6	SNAP-II score	45
7	SNAPPE-II score	46
8	Variables SNAP-II score	52
9	Variables SNAPPE-II score	53
10	Frequency of cases according to gestational age(weeks)	57
11	Relation between SNAP-II score and mode of respiratory support	58
12	Relation between SNAPPE-II score and mode of respiratory support	58
13	Relation between mortality and birth weight	59
14	Relation between SNAP-II score and mortality for all birth weight	60
15	Relation between SNAP-II score and mortality for birth weight 1500 g.	60
16	Relation between SNAP-II score and mortality for all birth weight >1500 g.	60
17	Relation between SNAPPE-II score and mortality for all birth weight	61
18	Relation between SNAPPE-II score and mortality for birth weight 1500 g.	61
19	Relation between SNAPPE-II score and mortality for all birth weight >1500 g.	61

List of figures

Figure	Figure 4:41a	Page
No.	Figure title	
1	Receiver operating characteristic curve for discrimination of four scores in a Saudi Arabia ICU	10
2	Calibration of the Paediatric Logistic Organ Dysfunction score (PELOD)	12
3	The main differences between prognostic and outcome scores	19
4	Relationship between the number of organ or system dysfunctions and mortality	28
5	Sex distribution among cases	56
6	Mode of oxygen support of the studied infants	58
7	Area Under the ROC Curve for Mean Blood Pressure	62
8	Area Under the ROC Curve for Lowest Temperature	63
9	Area Under the ROC Curve for Po ₂ /Fio ₂ Ratio	64
10	Area Under the ROC Curve for Lowest pH	65
11	Area Under the ROC Curve for Urine Output	66
12	Area Under the ROC Curve for Gestational Age	67
13	Area Under the ROC Curve for Birth Weight	68
14	Area Under the ROC Curve for Low Apgar	69
15	Area Under the ROC Curve for Multiple Seizures	70
16	Area Under the ROC Curve for Small for Gestional Age	71
17	Area Under the ROC Curve for SNAP-II Score	72
18	Area Under the ROC Curve for SNAPPE-II Score	73

List of abbreviations

APACHE	Acute Physiology and Chronic Health Evaluation
ALT	Alanine aminotransferase
APS	Acute Physiology Score
BUN	Blood Urea Nitrogen
CO ₂	Carbon Dioxide
CPAP	Continuous Positive Airway Pressure
CRIB	Clinical Risk Index Of Babies
FiO ₂	Fraction of inspired Oxygen
GCS	Glasgow Coma Scale
HIV	Human Immune deficiency Virus
HR	Heart Rate
ICU	Intensive Care Unit
INR	International Normalization Ratio
IQ	Intelligence Quotient
IU	International Unit
kPa	kilo Paskal
LODS	Logistic Organ Dysfunction Score
MBP	Mean Blood Pressure
MDI	Mental Development Index
mEq/L	Milli Equivalent per Liter

mmHg	Milligram per deciliter
mmol/L	Millimole per Liter
MODS	Multiple Organ Dysfunction Syndrome
MPM	Mortality Probability Model
NBRS	Neurobiological Risk Score
NICHD	National Institute of Child Health Development
NMPI	Neonatal Mortality Prognosis Index
NTISS	National Therapeutic Intervention Scoring System
P	Probability value
PaO ₂	Partial Oxygen Tension In Arterial Blood
PaCO ₂	Partial Pressure of Carbon Dioxide Tension
PMI	Psychomotor Development Index
PELOD	Paediatric Logistic Organ Dysfunction
PERI	Perinatal Risk Inventory
PHI	Prehospital Index
PICU	Paediatric Intensive Care Unit
PRISM	Paediatric Risk of Mortality
PRISM APS	Paediatric Risk of Mortality Acute Physiologic Score
PSI	Physiology Stability Index
PT	Prothrombin Time
PTS	Paediatric Trauma score

PTT	Partial Thromboplastin Time
ROC	Receiver Operating Characteristics
ROM	Risk of mortality
RR	Respiratory Rate
SAPS	Simplified Acute Physiology score
SBP	Systolic Blood Pressure
SD	Standard Deviation
SIRS	Systemic Inflammatory Response Syndrome
SNAP	Score for Neonatal Acute Physiology
SNAP-II	Score for Neonatal Acute Physiology, version II
SNAPPE	Score for Neonatal Acute Physiology- Perinatal Extension
SNAPPE-II	Score for Neonatal Acute Physiology- Perinatal Extension, version II
SOFA	Sepsis-Related organ Failure Assessment Score
SOI	Severity of Illness
SGA	Small for gestational age
UK	United Kingdom
US	Ultrasound
WBCs	White Blood Cells
μmol/L	Micro mole per liter

Abstract

The measurement of illness severity and mortality risk is essential to making fair comparisons of outcomes among hospitals and routinely available markers of risk such as birth weight, gestational age, and sex do not adequately capture the dimension of illness severity. Scoring systems are a means to quantify clinical states that are difficult to summarize by other subjective or objective means. The desirable properties of neonatal scores are not much different in essence from those required for scores used in paediatric population. This properties have been described as including: (1) ease of use; (2) applicability early in the course of hospitalization; (3) ability to predict mortality, specific morbidities; and (4) usefulness for all groups of neonates to be described.

So SNAP-II and SNAPPE-II developed as a simple neonatal illness severity and mortality risk scores.

Key Word : SNAP-II and SNAPPE-II - illness severity and mortality risk scores - newborn.

INTRODUCTION

Scoring systems and risk prediction rules quantitate the severity of clinical conditions and stratify patients according to a specified outcome. In intensive care medicine, the complexity and number of clinical scoring systems is increasing as the utility in both health services research and clinical medicine broadens. We anticipate that the increasing health care costs and competition and the demand for risk adjusted outcomes will increase. As academicians and clinicians, it is vital to be knowledgeable regarding the methodologies and application of these scoring and risk prediction systems to insure their quality and appropriate utilization (Marcin et al.,2000).

Current healthcare economics require large investments for establishing ICUs. It is important for developing countries to evaluate the benefit from having costly ICUs and to ensure the most cost-effective use of their limited resources without compromising the quality of care (Ozer et al., 2004).

To achieve cost-effectiveness, health service researchers have been investigating differences in structure, processes and outcomes of medical care (quality and cost) to identify "best practices". Accurate, reliable conclusions about "best practices" often require clinical scoring systems designed to objectively measure clinical status, severity of illness (SOI), or risk of a specified outcome (Marcin et al.,2000).

Scoring systems are a means to quantify clinical states that are difficult to summarize by other subjective or objective means. These

systems are especially valuable in the ICUs, where subjective impressions of clinical states, severity of illness (SOI), and risk of mortality are highly variable (**Ozer et al., 2004**).

Routinely available markers of risk such as birth weight, gestational age, and sex do not adequately capture the dimension of illness severity (Maier et al., 2002).

The desirable properties of neonatal scores are not much different in essence from those required for scores used in pediatric population. This properties have been described as including: (1) ease of use; (2) applicability early in the course of hospitalization; (3) ability to predict mortality, specific morbidities; and (4) usefulness for all groups of neonates to be described (**Dorling et al., 2005**).

Score for Neonatal Acute Physiology (SNAP) was developed in 1990. It is based on 28 items collected over the first 24 hours of admission in NICU. Birth weight < 1000 grams, small for gestational age" weight < 3rd percentile for gestation", and Apgar score at 5 minutes(< 7) were added to the original SNAP to develop SNAP-PE (SNAP -PERINATAL EXTENSION). The major problem with this 28 variables score is the difficulty to collect. A second generation of SNAP and SNAPPE (SNAP-II and SNAPPE-II) which would be:

- 1. Simpler: by reducing the number of score items.
- 2. More reliable: by eliminating score items that are complex or difficult to define and abstract.
- 3. Empirically weighted: by deriving the score empirically so that score items reflect actual mortality risk rather than the original clinician estimates (**Dorling et al., 2005**).

AIM OF WORK

The aim of this study is to assess the efficiency of The Score for Neonatal Acute Physiology, Version II (SNAP-II) and The Score for Neonatal Acute Physiology-Perinatal Extension, Version II (SNAPPE-II) as a simple neonatal illness severity and mortality risk scores.

There has been an enormous increase in the number and the complexity of clinical scoring systems and their use in research and patient care. In paediatrics, it has been a revolution from the time of the Appar score in 1953 to current scoring systems (**Dorling et al., 2005**).

Although it may be possible to derive a risk adjustment score in a particular study, investigators will often require a readymade score. They may lack the data, resources, time, funding, or expertise required to develop their own score. A previously validated score also has the advantage that it is more likely to be accepted by others. The choice of which variables are to be included in the score and their relative weights is obviously vital. A balance needs to be drawn between a complex score including many variables, and therefore difficult to complete, and a simpler model that may be easier to use but not as accurate. It also needs to be remembered that no score can completely quantify the complex factors that make up an individual child's morbidity (Shann, 2002).

Usually, scores are created in one of two ways "Medical" scores are derived by an expert panel using clinical knowledge to select the variables to be included in the score and their relative weights. Alternatively, collected data are used in statistical models to produce "Statistical" scores by identifying which variables have strong association with the outcome of interest and their relative weights. There is evidence that, in the long run, statistical scores outperform purely medical scores and today most scores are statistical as there are often

relevant data available. However, clinical knowledge should indeed contribute to the choice of variables included in a final model; not just because the model is then likely to perform better with other groups of children but because it will be seen as more reliable by users (**Dorling et al., 2005**).

However the score is derived, it is important that it has been validated to confirm that it predicts future events, preferably in a different dataset, with an adequate accuracy (calibration). It is important to remember that, for the score to be clinically useful, the predicted and observed event rates should closely match (Altman et al., 2000).

Despite the large volume of literature describing different scoring systems and their uses, not much has described how these systems are developed.

First the objective of the scoring system is defined, followed by data collection, statistical analysis of data, and finally validation (**Adlam** et al., 2005).

Definition of objective

The development of a successful scoring system requires clear, easily defined, and relevant outcome variables; adherence to well-defined methodological standards; and a clear objective. The clear objective of the scoring system and its proposed use will determine whether predictor variables are selected for being simple and cost-effective (as for scores used in emergencies) or for optimum statistical accuracy as in the more complex scores (Greenland et al., 1989).