

Ain Shams University
Faculty of Medicine
Department of Radiodiagnosis

Role of Ultrasonography versus Multislice CT in Diagnosis of Biliary Obstruction

by

Ahmed Mohamed Hamdy Hashish

M.B.B.CH

Submitted in Partial Fulfillment of the Requirements for Degree M.Sc in Radiodiagnosis

Supervised By

Prof. Dr. Mervat Mohamed El Gohary

Professor of Radiodiagnosis Faculty of Medicine Ain Shams University

Dr. Amany Emad El Din Rady

Assistant Professor of Radiodiagnosis Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2010

Role of Ultrasonography versus Multislice CT in Diagnosis of Biliary Obstruction

by

Ahmed Mohamed Hamdy Hashish

M.B.B.CH

Submitted in Partial Fulfillment of the Requirements for Degree M.Sc in Radiodiagnosis

Supervised By

Prof. Dr. Mervat Mohamed El Gohary

Professor of Radiodiagnosis Faculty of Medicine Ain Shams University

Dr. Amany Emad El Din Rady

Assistant Professor of Radiodiagnosis Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2010

ACKNOWLEDGEMENT

First and foremost, thanks to **ALLAH** for most Merciful and most Gracious who gave me the ability to carry out this work

I wish to express my deepest thanks and sincere gratitude to **Prof. Dr. Mervat Mohamed El Gohary**, professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for her great help and unlimited support and graceful understanding. No words could express my deep gratitude to her. I will never forget her endless help throughout the whole work.

The help I had received under the supervision of **Dr. Amany Emad El Din Rady**, assistant professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, could not be denied, and I wish gratefully to record my acknowledgement for her valuable advise and guidance to complete this work. I will never forget his endless help throughout the whole study.

I would like to express all my deep appreciation to my father; **Prof. Dr. Mohamed Hamdy Hashish**; my brothers and my sisters for their great help and encouragement.

Finally, I can never forget to thank my colleagues and thanks to everyone made any effort for this work to be a reality.

Ahmed Mohamed Hamdy Hashish 2010

Dedication

With All My Love

محمد رسول الله To

My Mother

This work without my mother love, support and encouragement, this essay and many of my individual accomplishments, would never have materialized.

Ahmed Mohamed Hamdy Hashish 2010

Contents

Subjects	Page
Introduction & Aim of the work	1
Review of the Literature	
*Anatomy of the biliary system	4
* US and CT anatomy of Biliary System	13
* Pathophysiology of the biliary obstruction	21
* US and CT technique of biliary obstruction	39
* US and CT manifestations of biliary obstruction.	56
Illustrative Cases	80
Summary and Conclusion	103
References	107
Arabic Summary	

NO	List Of Figures	Page
1	Drawings illustrate the normal embryologic development of the pancreas and biliary tree	4
2	Developmental anatomy of the liver and biliary system.	5
3	The pancreato-biliary system.	7
4	Gallbladder and biliary tract	8
5	Overall arrangement of the intra and extra hepatic biliary tree.	9
6	Anatomy of the intrahepatic biliary tree and its relation to hepatic segments.	10
7	extra hepatic biliary tract and the four portions of the common bile duct.	12
8	normal gall bladder in US.	13
9	CBD at the porta hepatis	15
10	The porta hepatis	16
11	Axial CT of gall bladder.	17
12	Axial CT cuts segmental anatomy of CBD	19
13	Pancreatic duct	20
14	CT showing a case of choledochocele	24
15	CT showing a case of choledochal cyst.	25
16	Drawing shows types of choledochal cysts.	26
17	Axial CT cuts in a case of Caroli's disease.	27
18	Drawing shows the main right hepatic duct and the multiple segmental branch dilatations related to Caroli's disease.	28
19	Axial CT shows case of choledocholithiasis.	29
20	Axial CT in Mirizzi syndrome.	29
21	Axial CT in a case sclerosing cholangitis.	31
22	Axial CT showing mucocele and biloma	33
23	Bismuth-Corlette classification of hilar cholangiocarcinoma	36

24	Anatomical classification of cholangio-	36	
	carcinoma	J U	
25	cancer head of pancreas		
26	US of common bile duct with small stone	40	
20	located distally	40	
27	Miniprobe ultrasonography	42	
	Malignant hilar obstruction from		
28	cholangiocarcinoma; Transverse	44	
40	unenhanced sonogram, Transverse contrast-	44	
	enhanced sonogram		
	spectral Doppler tracing the sensitive gate		
29	has been placed over the middle hepatic vein	46	
	and the trace shows the normal pattern		
30	Colour Doppler of the hepatic vein and the	47	
30	portal vein	47	
	The MPR (coronal oblique) image shows		
31	the extra hepatic bile duct as a hypo	51	
	attenuated structure		
22	Axial CT cuts showing intrahepatic bile duct	52	
32	dilatation with bile duct mass	54	
	Coronal reformats from a CT angiography		
33	showing an arterial variant of the hepatic	53	
	artery.		
34	Examples of imaging techniques.	55	
35	US of cholelithiasis.	57	
26	Floating stones just below the anterior	57	
36	gallbladder wall	57	
37	US of acute cholecystitis 58		
20	74-year-old man with acute acalculous	5 0	
38	cholecystitis	59	
	A stone in a dilated common bile duct with		
39	posterior shadowing, stone formation in the	60	
	intrahepatic ducts.		

40	US of cholangitis.	61
41	Infiltrative intrahepatic cholangiocarcinoma. Transverse unenhanced sonogram shows segmental dilated ducts in right lobe.	62
42	Malignant hilar obstruction from cholangio- carcinoma. Transverse un enhanced sonogram dilated ducts in right lobe of liver duo to mass in left lobe.	63
43	Cholangiocarcinoma invading the CBD	63
44	Malignant hilar obstruction from cholangio- carcinoma; Transverse unenhanced sonogram of left lobe of liver shows poorly defined mass, Transverse contrast-enhanced sonogram shows abnormality to be tumor- filled left hepatic duct.	64
45	Klatskin tumors. Transverse postvascular contrast-enhanced sonogram shows large invasive tumor with intraductal and periductal extension.	65
46	Ultrasound image of the right lobe of the liver with color Doppler flow.	65
47	CT of cholelithiasis.	67
48	CT of cholelithiasis.	68
49	Intravenous contrast-enhanced abdominal CT demonstrated cholelithiasis	69
50	Acute cholecystitis. The gall bladder wall is thickened and shows mural edema. Multiple stones are also evident.	70
51	CT of choledocholithiasis	71
52	Choledocholithiasis. A high density stone is present within the lumen of a dilated common bile duct	72

53	Common bile duct stones The MPR (coronal oblique) image demonstrates two stones in the common bile duct.	72
54	Sclerosing cholangitis. Multiple areas of beading of focally ecstatic intra hepatic are evident	73
55	Cholangiocellular carcinoma (peripheral type) in a 72-year-old woman.	74
56	67-year-old man with hilar cholangio- carcinoma, Bismuth-Corlette type 3a. Oblique axial reformatted	76
57	Bile duct carcinoma (infiltrative hilar type) in an 84-year-old woman.	77
58	63-year-old man with hilar cholangio- carcinoma (papillary type). Contrast enhanced CT scan barely depicts intraductal papillary tumor	78

NO	List Of Tables	Page
1	The three systems of ultrasonic miniprobes.	43
2	CT acquisition parameters	50
3	CT protocol for assessment of suspected hilar cholangiocarcinoma	54

List of Abbreviations

CBD	Common bile duct
CCA	Cholangiocarcinoma
CCC	Central cholangiocarcinoma
CD	Common duct
CECT	Contrast Enhanced CT
CHD	Common hepatic duct
Cm	Centimetre
CT	Computed tomography
EHBDs	Extra hepatic biliary ducts
LIIDDS	Endoscopic retrograde Cholangiopancreato-
ERCP	
EUS	graphy Endoscopia Ultra sopography
	Endoscopic Ultra sonography Fine needle conjustion
FNA	Fine needle aspiration
GB	Gall bladder
GDA	Gastro-duodenal artery
HCT	Helical Computed Tomography
HCTC	Helical Computed Tomography Cholangio-
	graphy
HU	Hounsfield unit
<i>IDUS</i>	Intra ductal Ultra sonography
<i>IHBDs</i>	Intra hepatic biliary ducts
IVC	Inferior vena cava
LHD	Left hepatic duct
MDCT	Multi-detector computed tomography
MHz	Mega hertz
MIP	Maximum intensity projection
ML	Mille litre
MM	Mille meter
MPR	Multi-planar reformation
MPV	Mean portal vein

MRC	Magnetic resonance cholangiography	
MRCP	Magnetic resonance Cholangiopancreato- graphy	
MRI	Magnetic resonance imaging	
NECT	Non-Contrast Enhanced CT	
PD	Pancreatic duct	
PSC	Primary sclerosing cholangitis	
PTC	Percutaneous transhepatic cholangiography	
PV	Portal vein	
RAD	Right anterior duct	
RHD	Right hepatic duct	
RPD	Right posterior duct	
RPO	Right posterior oblique	
Sec	Second	
SMA	Superior mesenteric artery	
US	Ultra sonography	

Introduction

In patients with biliary obstruction, determining the level and the cause of the obstruction is essential because it can be a key factor for the next step in diagnostic or therapeutic intervention (*Kim et al.*, 2005).

Many imaging modalities are available for the evaluation of patients with suspected biliary obstruction. Commonly used procedures include ultrasonography (US), Computed tomography (CT), Endoscopic retrograde Cholangiopancreatography (ERCP) and percutaneous transhepatic cholangiography (PTC). The limitation of these modalities has led to increasing popularity of magnetic resonance Cholangiopancreatography (MRCP) (*Upadhyaya et al.*, 2006).

Sonography remains the primary imaging modality for the initial assessment of patients with biliary obstruction. As such, it often gives the first clues to the presence of a malignant hilar obstruction. Worldwide, sonography remains an important tool in the detection and staging of these lesions. The isoechoic nature of the some tumors and their propensity to grow in an infiltrative periductal pattern make their detection and the determination of their extent difficult. Often the location of the tumor is inferred from sonograms on the basis of the level of ductal obstruction and irregularity of the walls of the duct, whereas the actual borders of the lesion are not visualized (*Khalili et al.*, 2003).

Conventional CT scan does not provide adequate information about the pancreaticobiliary ductal anatomy and its abnormalities because the orientation of these ducts is not suitable for axial images. For this reason, endoscopic retrograde cholangiopancreatography (ERCP) and percutaneous transhepatic cholangiography (PTC) have been used as the most sensitive and specific diagnostic modalities and moreover these techniques have therapeutic potential as well. However, ERCP and PTC are more invasive and time-consuming compared to CT scan. As a non-invasive modality, MR cholangiopancreatography (MRCP) has recently

become a well-established diagnostic tool for assessing the pancreatico - biliary tree (*Hyun et al.*, 2007).

Multi-detector row CT (MDCT) is a major advance in the field of diagnostic imaging because it allows a fast table speed, and when combined with thin slices, permits data collection that is well suited for workstation analysis. Cholangiopancreatographic images can be produced using a workstation with advanced post processing techniques such as multiplanar reformations (MPR) and minimum intensity projections (MIP). The MPR images using MDCT gives rapid assessment of the pancreaticobiliary ducts along different planes without loosing information about the surrounding structures. By using the MIP technique, the fluid density, as contained in the pancreatico- biliary duct, is picked up from the contrast enhanced vessel together with that of the enhanced hepatic and pancreatic parenchyma. The combined use of MPR and MIP techniques significantly improves the images of the pancreatic and bile ducts and their site of confluence compared with those obtained by the axial CT (Hyun et al., 2007).

Aim of the work

Is to highlight the role of ultrasonography versus multislice CT in diagnosis of biliary obstruction.